Density fitting reduces the computational cost of both energy and gradient calculations by avoiding the computation and manipulation of four-index electron repulsion integrals. With this algorithm, one can efficiently optimize the geometries of large systems with an accurate multireference treatment. Here, we present the derivation of multiconfiguration pair-density functional theory for energies and analytic gradients with density fitting. Six systems are studied, and the results are compared to those obtained with no approximation to the electron repulsion integrals and to the results obtained by complete active space second-order perturbation theory. With the new approach, there is an increase in the speed of computation with a negligible loss in accuracy. Smaller grid sizes have also been used to reduce the computational cost of multiconfiguration pair-density functional theory with little effect on the optimized geometries and gradient values.

1.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
(
2
),
157
173
(
1980
).
2.
B. O.
Roos
,
Advances in Chemical Physics
(
Wiley, New York
,
1987
), Vol. 69, pp.
399
445
.
3.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
10
(
9
),
3669
3680
(
2014
).
4.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
,
Acc. Chem. Res.
50
(
1
),
66
73
(
2017
).
5.
S. J.
Stoneburner
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Chem. Phys.
148
(
6
),
064108
(
2018
).
6.
P.
Sharma
,
V.
Bernales
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Phys. Chem. Lett.
10
(
1
),
75
81
(
2018
).
7.
M. d. C.
Marín
,
L.
De Vico
,
S. S.
Dong
,
L.
Gagliardi
,
D. G.
Truhlar
, and
M.
Olivucci
,
J. Chem. Theory Comput.
15
(
3
),
1915
1923
(
2019
).
8.
A. M.
Sand
,
C. E.
Hoyer
,
K.
Sharkas
,
K. M.
Kidder
,
R.
Lindh
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
14
(
1
),
126
138
(
2018
).
9.
T. R.
Scott
,
M. R.
Hermes
,
A. M.
Sand
,
M. S.
Oakley
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Chem. Phys.
153
(
1
),
014106
(
2020
).
10.
T. R.
Scott
,
R.
Nieman
,
A.
Luxon
,
B.
Zhang
,
H.
Lischka
,
L.
Gagliardi
, and
C. A.
Parish
,
J. Phys. Chem. A
123
(
10
),
2049
2057
(
2019
).
11.
A. M.
Sand
,
K. M.
Kidder
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Phys. Chem. A
123
(
45
),
9809
9817
(
2019
).
12.
M.
Schütz
,
H.-J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
(
2
),
737
750
(
2004
).
13.
D. M.
Schrader
and
S.
Prager
,
J. Chem. Phys.
37
(
7
),
1456
1460
(
1962
).
14.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
(
1
),
41
51
(
1973
).
15.
J. L.
Whitten
,
J. Chem. Phys.
58
(
10
),
4496
4501
(
1973
).
16.
B. I.
Dunlap
,
J. W.
Connolly
, and
J. R.
Sabin
,
Int. J. Quantum Chem.
12
(
S11
),
81
87
(
1977
).
17.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
(
12
),
4993
4999
(
1979
).
18.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
(
5-6
),
359
363
(
1993
).
19.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
(
5-6
),
514
518
(
1993
).
20.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
(
1-4
),
331
340
(
1997
).
21.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
(
1-3
),
143
152
(
1998
).
22.
B. I.
Dunlap
,
Phys. Chem. Chem. Phys.
2
(
10
),
2113
2116
(
2000
).
23.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
(
18
),
4285
4291
(
2002
).
24.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
(
8
),
3175
3183
(
2002
).
25.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
26.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
(
9
),
1057
1065
(
2006
).
27.
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
,
J. Chem. Phys.
143
(
4
),
044110
(
2015
).
28.
M.
Yoshimine
,
IBM Res. Rep. RJ
555
(
1969
);
A. D.
McLean
,
Proc. Conf. Potential Energy Surfaces in Chemistry, IBM Rep. RA
18
, (
1971
).
29.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
(
4
),
683
705
(
1977
).
30.
F.
Aquilante
,
L.
Gagliardi
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
130
(
15
),
154107
(
2009
).
31.
I.
Fdez
,
M.
Galván Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
, and
R. K.
Carlson
,
J. Chem. Theory Comput.
15
(
11
),
5925
5964
(
2019
).
32.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
, and
S.
Sharma
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
33.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
(
14
),
5483
5488
(
1990
).
34.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
(
2
),
1218
1226
(
1992
).
35.
J.
Baker
,
J. Comput. Chem.
14
(
9
),
1085
1100
(
1993
).
36.
F.
Aquilante
,
M. G.
Delcey
,
T. B.
Pedersen
,
I. F.
Galván
, and
R.
Lindh
,
Mol. Phys.
115
(
17-18
),
2052
2064
(
2017
).
37.
M. G.
Delcey
,
L.
Freitag
,
T. B.
Pedersen
,
F.
Aquilante
,
R.
Lindh
, and
L.
González
,
J. Chem. Phys.
140
(
17
),
174103
(
2014
).
38.
D. L.
Barker
and
R. E.
Marsh
,
Acta Crystallogr.
17
(
12
),
1581
1587
(
1964
).
39.
A.
Nakayama
,
S.
Yamazaki
, and
T.
Taketsugu
,
J. Phys. Chem. A
118
(
40
),
9429
9437
(
2014
).
40.
J. W.
Park
and
T.
Shiozaki
,
J. Chem. Theory Comput.
13
(
6
),
2561
2570
(
2017
).
41.
J. W.
Park
and
T.
Shiozaki
,
Mol. Phys.
116
(
19-20
),
2583
2590
(
2018
).
42.
J. J.
Bao
,
C.
Zhou
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
16
,
7444
(
2020
).
43.
J. J.
Bao
,
C.
Zhou
,
Z.
Varga
,
S.
Kanchanakungwankul
,
L.
Gagliardi
, and
D. G.
Truhlar
,
Faraday Discuss.
224
,
348
(
2020
).

Supplementary Material

You do not currently have access to this content.