Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(−)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm–10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.

1.
J. A.
Torres
,
P. F.
Nealey
, and
J. J.
de Pablo
,
J. Phys. Rev. Lett.
85
,
3221
3224
(
2000
).
2.
M.
Tarnacka
,
M.
Mierzwa
,
E.
Kamińska
,
K.
Kamiński
, and
M.
Paluch
,
Nanoscale
12
,
10600
(
2020
).
3.
R. J.
Lang
,
W. L.
Merling
, and
D. S.
Simmons
,
ACS Macro Lett.
3
,
758
762
(
2014
).
4.
S.
Alexandris
,
P.
Papadopoulos
,
G.
Sakellariou
,
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
,
Macromolecules
49
,
7400
7414
(
2016
).
5.
C.
Politidis
,
S.
Alexandris
,
G.
Sakellariou
,
M.
Steinhart
, and
G.
Floudas
,
Macromolecules
52
,
4185
4195
(
2019
).
6.
D.
Mukherji
and
M. H.
Müser
,
Macromolecules
40
,
1754
1762
(
2007
).
7.
P. Z.
Hanakata
,
J. F.
Douglas
, and
F. W.
Starr
,
Nat. Commun.
5
,
4163
(
2014
).
8.
P. Z.
Hanakata
,
B. A.
Pazmiño Betancourt
,
J. F.
Douglas
, and
F. W.
Starr
,
J. Chem. Phys.
142
,
234907
(
2015
).
9.
A.
Panagopoulou
,
C.
Rodríguez-Tinoco
,
R. P.
White
,
J. E. G.
Lipson
, and
S.
Napolitano
,
Phys. Rev. Lett.
124
,
027802
(
2020
).
10.
M.
Tarnacka
,
M.
Wojtyniak
,
A.
Brzózka
,
A.
Talik
,
B.
Hachuła
,
E.
Kamińska
,
G. D.
Sulka
,
K.
Kaminski
, and
M.
Paluch
,
Nano Lett.
20
(
8
),
5714
5719
(
2020
).
11.
K.
Chat
,
W.
Tu
,
L.
Laskowski
, and
K.
Adrjanowicz
,
J. Phys. Chem. C
123
,
13365
13376
(
2019
).
12.
W. K.
Kipnusu
,
M.
Elsayed
,
R.
Krause–Rehberg
, and
F.
Kremer
,
J. Chem. Phys.
146
,
203302
(
2017
).
13.
K.
Adrjanowicz
,
K.
Kaminski
,
K.
Koperwas
, and
M.
Paluch
,
Phys. Rev. Lett.
115
,
265702
(
2015
).
14.
K.
Adrjanowicz
and
M.
Paluch
,
Phys. Rev. Lett.
122
,
176101
(
2019
).
15.
A.
Schönhals
,
H.
Goering
, and
C.
Schick
,
J. Non-Cryst. Solids
305
,
140
149
(
2002
).
16.
A.
Schönhals
,
H.
Goering
,
C.
Schick
,
B.
Frick
, and
R.
Zorn
,
Eur. Phys. J. E
12
,
173
178
(
2003
).
17.
M.
Tarnacka
,
E.
Kaminska
,
K.
Kaminski
,
C. M.
Roland
, and
M.
Paluch
,
J. Phys. Chem. C
120
,
7373
(
2016
).
18.
M.
Tarnacka
,
K.
Kaminski
,
E. U.
Mapesa
,
E.
Kaminska
, and
M.
Paluch
,
Macromolecules
49
(
17
),
6678
6686
(
2016
).
19.
D.
Morineau
and
C.
Alba-Simionesco
,
J. Phys. Chem. Lett.
1
,
1155
1159
(
2010
).
20.
C.
Gainaru
,
S.
Schildmann
, and
R.
Böhmer
,
J. Chem. Phys.
135
,
174510
(
2011
).
21.
H.
Jansson
and
J.
Swenson
,
J. Chem. Phys.
134
,
104504
(
2011
).
22.
W. K.
Kipnusu
,
M.
Elsayed
,
W.
Kossack
,
S.
Pawlus
,
K.
Adrjanowicz
,
M.
Tress
,
E. U.
Mapesa
,
R.
Krause-Rehberg
,
K.
Kaminski
, and
F.
Kremer
,
J. Phys. Chem. Lett.
6
,
3708
3712
(
2015
).
23.
A.
Talik
,
M.
Tarnacka
,
M.
Geppert-Rybczyńska
,
B.
Hachuła
,
R.
Bernat
,
A.
Chrzanowska
,
K.
Kaminski
, and
M.
Paluch
,
J. Colloid Interface Sci.
576
,
217
229
(
2020
).
24.
G. H.
Findenegg
,
S.
Jähnert
,
D.
Akcakayiran
, and
A.
Schreiber
,
Chem. Phys. Chem.
9
,
2651
2659
(
2008
).
25.
L.
Liu
,
A.
Faraone
,
C.-Y.
Mou
,
C.-W.
Yen
, and
S.-H.
Chen
,
J. Phys.: Condens. Matter
16
,
S5403
S5436
(
2004
).
26.
F.
Mallamace
,
M.
Broccio
,
C.
Corsaro
,
A.
Faraone
,
D.
Majolino
,
V.
Venuti
,
L.
Liu
,
C.-Y.
Mou
, and
S.-H.
Chen
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
424
428
(
2007
).
27.
A.
Ghoufi
,
I.
Hureau
,
D.
Morineau
,
R.
Renou
, and
A.
Szymczyk
,
J. Phys. Chem. C
117
,
15203
15212
(
2013
).
28.
Y.
Suzuki
,
M.
Steinhart
,
R.
Graf
,
H.-J.
Butt
, and
G.
Floudas
,
J. Phys. Chem. B
119
(
46
),
14814
14820
(
2015
).
29.
Y.
Yao
,
V.
Fella
,
W.
Huang
,
K. A. I.
Zhang
,
K.
Landfester
,
H.-J.
Butt
,
M.
Vogel
, and
G.
Floudas
,
Langmuir
35
,
5890
5901
(
2019
).
30.
Y.
Jung
,
C.
Jeon
,
J.
Kim
,
H.
Jeong
,
S.
Jun
, and
B.-Y.
Ha
,
Soft Matter
8
,
2095
2102
(
2012
).
31.
P. R.
Cook
and
D.
Marenduzzo
,
J. Cell Biol.
186
,
825
834
(
2009
).
32.
J.
Dorier
and
A.
Stasiak
,
Nucleic Acids Res.
37
,
6316
6322
(
2009
).
33.
M.
Daoud
and
P. G.
de Gennes
,
J. Phys.
38
,
85
93
(
1977
).
34.
Y.
Jung
,
J.
Kim
,
S.
Jun
, and
B.-Y.
Ha
,
Macromolecules
45
,
3256
3262
(
2012
).
35.
P. A.
Wiggins
,
K. C.
Cheveralls
,
J. S.
Martin
,
R.
Lintner
, and
J.
Kondev
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
4991
4995
(
2010
).
36.
Y.
Almadori
,
L.
Alvarez
,
R.
Le Parc
,
R.
Aznar
,
F.
Fossard
,
A.
Loiseau
,
B.
Jousselme
,
S.
Campidelli
,
P.
Hermet
,
A.
Belhboub
,
A.
Rahmani
,
T.
Saito
, and
J.-L.
Bantignies
,
J. Phys. Chem. C
118
,
19462
19468
(
2014
).
37.
K.
Nanjundiah
and
A.
Dhinojwala
,
Phys. Rev. Let.
95
,
154301
(
2005
).
38.
M. Y.
Ivanov
,
A. S.
Poryvaev
,
D. M.
Polyukhov
,
S. A.
Prikhod’ko
,
N. Y.
Adonin
, and
M. V.
Fedin
,
Nanoscale
12
,
23480
23487
(
2020
).
39.
A.
Jedrzejowska
,
K. L.
Ngai
, and
M.
Paluch
,
J. Phys. Chem. A
120
,
8781
8785
(
2016
).
40.
A.
Jedrzejowska
,
Z.
Wojnarowska
,
K.
Adrjanowicz
,
K. L.
Ngai
, and
M.
Paluch
,
J. Chem. Phys.
146
,
094512
(
2017
).
41.
C.
Iacob
,
J. R.
Sangoro
,
P.
Papadopoulos
,
T.
Schubert
,
S.
Naumov
,
R.
Valiullin
,
J.
Kärger
, and
F.
Kremer
,
Phys. Chem. Chem. Phys.
12
,
13798
(
2010
).
42.
W. K.
Kipnusu
,
W.
Kossack
,
C.
Iacob
,
M.
Jasiurkowska
,
J.
Rume Sangoro
, and
F.
Kremer
,
Z. Phys. Chem.
226
,
797
(
2012
).
43.
A.
Wandschneider
,
J. K.
Lehmann
,
A.
Heintz
,
J. Chem. Eng. Data
53
,
596
599
(
2008
).
44.
J.
Feder-Kubis
,
M.
Geppert-Rybczyńska
,
M.
Musiał
,
E.
Talik
, and
A.
Guzik
,
A Physicochem. Eng. Asp.
529
,
725
732
(
2017
).
45.
J.-Y.
Park
and
G. B.
McKenna
,
Phys. Rev. B
61
,
6667
(
2000
).
46.
W.
Tu
,
R.
Richert
, and
K.
Adrjanowicz
,
J. Phys. Chem. C
124
,
5389
5594
(
2020
).
47.
S.
Havriliak
and
S.
Negami
,
J. Polym. Sci., Part C: Polym. Symp.
14
,
99
117
(
1966
).
48.
F.
Kremer
and
A.
Schonhals
,
Broadband Dielectric Spectroscopy
(
Springer
,
2003
).
49.
H.
Vogel
,
J. Phys. Z.
22
,
645
646
(
1921
).
50.
G. S.
Fulcher
,
J. Am. Ceram. Soc.
8
,
339
355
(
1925
).
51.
G.
Tammann
and
W.
Hesse
,
Z. Anorg. Allg. Chem.
156
,
245
257
(
1926
).
52.
E. M.
Blokhuis
and
J.
Kuipers
,
J. Chem. Phys.
124
,
074701
(
2006
).
53.
S.
Kim
,
D.
Kim
,
J.
Kim
,
S.
An
, and
W.
Jhe
,
Phys. Rev. X
8
,
041046
(
2018
).
54.
A.
Talik
,
M.
Tarnacka
,
M.
Wojtyniak
,
E.
Kaminska
,
K.
Kaminski
, and
M.
Paluch
,
J. Mol. Liq.
298
,
111973
(
2020
).
55.
G.
Soctrates
,
Infrared and Raman Characteristic Group Frequencies: Tables and Charts
, 3rd ed. (
Wiley
,
2004
).
56.
G. L.
Caldow
and
W. H.
Thompson
,
Proc. R. Soc.
A245
,
1
(
1960
).
57.
A. D.
Buckingham
,
Trans. Faraday Soc.
56
,
753
760
(
1960
).
58.
V.
Mohaček-Groševa
,
K.
Furić
, and
H.
Ivanković
,
Vib. Spectrosc.
64
,
101
107
(
2013
).
59.
K.
Tomita
,
M.
Mizukami
,
S.
Nakano
,
N.
Ohta
,
N.
Yagi
, and
K.
Kurihara
,
Phys. Chem. Chem. Phys.
20
(
20
),
13714
13721
(
2018
).
60.
N.
Kuon
,
A. A.
Milischuk
,
B. M.
Ladanyi
, and
E.
Flenner
,
J. Chem. Phys.
146
(
21
),
214501
(
2017
).
61.
A.
Talik
,
M.
Tarnacka
,
M.
Geppert-Rybczyńska
,
B.
Hachuła
,
K.
Kaminski
, and
M.
Paluch
,
J. Phys. Chem. C
124
(
32
),
17607
17621
(
2020
).
62.
L.
Li
,
D.
Zhou
,
D.
Huang
, and
G.
Xue
,
Macromolecules
47
,
297
303
(
2014
).
63.
L.
Chen
,
K.
Zheng
,
X.
Tian
,
K.
Hu
,
R.
Wang
,
C.
Liu
,
Y.
Li
,
Y.
Li
, and
P.
Cui
,
Macromolecules
43
,
1076
1082
(
2010
).
64.
R.
Richert
,
Eur. Phys. J.: Spec. Top.
189
,
37
46
(
2010
).
65.
Y.
Yao
,
Y.
Suzuki
,
J.
Seiwert
,
M.
Steinhart
,
H.
Frey
,
H.-J.
Butt
, and
G.
Fluodas
,
Macromolecules
50
,
8755
(
2017
).
66.
F.
He
,
L.-M.
Wang
, and
R.
Richert
,
Phys. Rev. B
71
,
144205
(
2005
).
67.
R.
Kohlrausch
,
Ann. Phys. Chem.
148
,
353
(
1847
).
68.
J.
Schüller
,
Y. B.
Mel’nichenko
,
R.
Richert
, and
E. W.
Fischer
,
Phys. Rev. Lett.
73
,
2224
(
1994
).
69.
F.
Kremer
,
Dynamics in Geometrical Confinement
,
Springer
(
2014
).
70.
L.
Hong
,
P. D.
Gujrati
,
V. N.
Novikov
, and
A. P.
Sokolov
,
J. Chem. Phys.
131
,
194511
(
2009
).
71.
J. K. H.
Fischer
,
P.
Sippel
,
D.
Denysenko
,
P.
Lunkenheimer
,
D.
Volkmer
, and
A.
Loidl
,
J. Chem. Phys.
143
(
15
),
154505
(
2015
).
72.
M.
Uhl
,
J. K. H.
Fischer
,
P.
Sippel
,
H.
Bunzen
,
P.
Lunkenheimer
,
D.
Volkmer
, and
A.
Loidl
,
J. Chem. Phys.
150
,
024504
(
2019
).
73.
R. C.
Tolman
,
J. Chem. Phys.
16
,
758
(
1948
).
74.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
(
1949
).
75.
R. C.
Tolman
,
J. Chem. Phys.
17
,
118
(
1949
).
76.
M.
Tarnacka
,
A.
Talik
,
E.
Kamińska
,
M.
Geppert-Rybczyńska
,
K.
Kaminski
, and
M.
Paluch
,
Macromolecules
52
(
9
),
3516
3529
(
2019
).
77.
A.
Talik
,
M.
Tarnacka
,
M.
Geppert-Rybczynska
,
A.
Minecka
,
E.
Kaminska
,
K.
Kaminski
, and
M.
Paluch
,
J. Phys. Chem. C
123
(
9
),
5549
5556
(
2019
).
78.
T.
Young
,
Philos. Trans. R. Soc. London
95
,
65
87
(
1805
).
79.
F. M.
Fowkes
,
Ind. Eng. Chem.
56
,
40
52
(
1964
).
80.
F. M.
Fowkes
,
J. Phys. Chem.
66
,
382
(
1962
).

Supplementary Material

You do not currently have access to this content.