In this work, the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach was applied to calculate the 13C and 1H nuclear magnetic resonance (NMR) chemical shifts in molecular crystals. Two benchmark sets of molecular crystals were selected to calculate the NMR chemical shifts. Systematic investigation was conducted to examine the convergence of AF-QM/MM calculations and the impact of various density functionals with different basis sets on the NMR chemical shift prediction. The result demonstrates that the calculated NMR chemical shifts are close to convergence when the distance threshold for the QM region is larger than 3.5 Å. For 13C chemical shift calculations, the mPW1PW91 functional is the best density functional among the functionals chosen in this study (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB98, and OPBE), while the OB98 functional is more suitable for the 1H NMR chemical shift prediction of molecular crystals. Moreover, with the B3LYP functional, at least a triple-ζ basis set should be utilized to accurately reproduce the experimental 13C and 1H chemical shifts. The employment of diffuse basis functions will further improve the accuracy for 13C chemical shift calculations, but not for the 1H chemical shift prediction. We further proposed a fragmentation scheme of dividing the central molecule into smaller fragments. By comparing with the results of the fragmentation scheme using the entire central molecule as the core region, the AF-QM/MM calculations with the fragmented central molecule can not only achieve accurate results but also reduce the computational cost. Therefore, the AF-QM/MM approach is capable of predicting the 13C and 1H NMR chemical shifts for molecular crystals accurately and effectively, and could be utilized for dealing with more complex periodic systems such as macromolecular polymers and biomacromolecules. The AF-QM/MM program for molecular crystals is available at https://github.com/shiman1995/NMR.

1.
M.
Baias
,
C. M.
Widdifield
,
J.-N.
Dumez
,
H. P. G.
Thompson
,
T. G.
Cooper
,
E.
Salager
,
S.
Bassil
,
R. S.
Stein
,
A.
Lesage
,
G. M.
Day
, and
L.
Emsley
,
Phys. Chem. Chem. Phys.
15
,
8069
(
2013
).
2.
A. H.
Kwan
,
M.
Mobli
,
P. R.
Gooley
,
G. F.
King
, and
J. P.
Mackay
,
FEBS J.
278
,
687
(
2011
).
3.
R. W.
Schurko
,
Acc. Chem. Res.
46
,
1985
(
2013
).
4.
A.
Sutrisno
and
Y.
Huang
,
Solid State Nucl. Magn. Reson.
49-50
,
1
(
2013
).
5.
S. E.
Ashbrook
and
S.
Sneddon
,
J. Am. Chem. Soc.
136
,
15440
(
2014
).
7.
F. H.
Schumann
,
H.
Riepl
,
T.
Maurer
,
W.
Gronwald
,
K.-P.
Neidig
, and
H. R.
Kalbitzer
,
J. Biomol. NMR
39
,
275
(
2007
).
8.
H.
Saitô
,
I.
Ando
, and
A.
Ramamoorthy
,
Prog. Nucl. Magn. Reson. Spectrosc.
57
,
181
(
2010
).
9.
K.
Baskaran
,
K.
Brunner
,
C. E.
Munte
, and
H. R.
Kalbitzer
,
J. Biomol. NMR
48
,
71
(
2010
).
10.
J. C.
Facelli
and
D. M.
Grant
,
Nature
365
,
325
(
1993
).
11.
X.-P.
Xu
and
D. A.
Case
,
J. Biomol. NMR
21
,
321
(
2001
).
12.
B.
Han
,
Y.
Liu
,
S. W.
Ginzinger
, and
D. S.
Wishart
,
J. Biomol. NMR
50
,
43
(
2011
).
13.
Y.
Shen
and
A.
Bax
,
J. Biomol. NMR
48
,
13
(
2010
).
14.
A.
Cavalli
,
X.
Salvatella
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
9615
(
2007
).
15.
A. C.
de Dios
and
E.
Oldfield
,
Chem. Phys. Lett.
205
,
108
(
1993
).
16.
A. C.
de Dios
,
Prog. Nucl. Magn. Reson. Spectrosc.
29
,
229
(
1996
).
17.
T.
van Mourik
,
J. Chem. Phys.
125
,
191101
(
2006
).
18.
E. J.
Borkowski
,
F. D.
Suvire
, and
R. D.
Enriz
,
J. Mol. Struct.: THEOCHEM
953
,
83
(
2010
).
19.
M.
Bühl
and
T.
van Mourik
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
634
(
2011
).
20.
Q.
Cui
and
M.
Karplus
,
J. Phys. Chem. B
104
,
3721
(
2000
).
21.
C.
Ochsenfeld
,
J.
Kussmann
, and
F.
Koziol
,
Angew. Chem., Int. Ed.
43
,
4485
(
2004
).
22.
M.
Beer
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
134
,
074102
(
2011
).
23.
X.
He
,
B.
Wang
, and
K. M.
Merz
,
J. Phys. Chem. B
113
,
10380
(
2009
).
24.
A.
Frank
,
I.
Onila
,
H. M.
Möller
, and
T. E.
Exner
,
Proteins: Struct., Funct., Bioinf.
79
,
2189
(
2011
).
25.
A.
Frank
,
H. M.
Möller
, and
T. E.
Exner
,
J. Chem. Theory Comput.
8
,
1480
(
2012
).
26.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
27.
D. W.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
3599
(
2003
).
28.
X.
He
and
J. Z. H.
Zhang
,
J. Chem. Phys.
122
,
031103
(
2004
).
29.
X.
He
and
J. Z. H.
Zhang
,
J. Chem. Phys.
124
,
184703
(
2006
).
30.
W.
Xie
and
J.
Gao
,
J. Chem. Theory Comput.
3
,
1890
(
2007
).
31.
L. D.
Jacobson
and
J. M.
Herbert
,
J. Chem. Phys.
134
,
094118
(
2011
).
32.
X.
Wang
,
J.
Liu
,
J. Z. H.
Zhang
, and
X.
He
,
J. Phys. Chem. A
117
,
7149
(
2013
).
33.
X.
He
,
T.
Zhu
,
X.
Wang
,
J.
Liu
, and
J. Z. H.
Zhang
,
Acc. Chem. Res.
47
,
2748
(
2014
).
34.
T. J.
Giese
,
H.
Chen
,
M.
Huang
, and
D. M.
York
,
J. Chem. Theory Comput.
10
,
1086
(
2014
).
35.
T. J.
Giese
,
M.
Huang
,
H.
Chen
, and
D. M.
York
,
Acc. Chem. Res.
47
,
2812
(
2014
).
36.
T. J.
Giese
,
M. T.
Panteva
,
H.
Chen
, and
D. M.
York
,
J. Chem. Theory Comput.
11
,
451
(
2015
).
37.
T. J.
Giese
and
D. M.
York
,
J. Phys.: Condens. Matter
29
,
383002
(
2017
).
38.
T.
Zhu
,
X.
He
, and
J. Z. H.
Zhang
,
Phys. Chem. Chem. Phys.
14
,
7837
(
2012
).
39.
T.
Zhu
,
J. Z. H.
Zhang
, and
X.
He
,
J. Chem. Theory Comput.
9
,
2104
(
2013
).
40.
J.
Swails
,
T.
Zhu
,
X.
He
, and
D. A.
Case
,
J. Biomol. NMR
63
,
125
(
2015
).
41.
X.
Jin
,
T.
Zhu
,
J. Z. H.
Zhang
, and
X.
He
,
RSC Adv.
6
,
108590
(
2016
).
42.
X.
Jin
,
T.
Zhu
,
J. Z. H.
Zhang
, and
X.
He
,
Front. Chem.
6
,
150
(
2018
).
43.
F.
Mauri
,
B. G.
Pfrommer
, and
S. G.
Louie
,
Phys. Rev. Lett.
77
,
5300
(
1996
).
44.
D.
Stueber
,
Concepts Magn. Reson., Part A
28A
,
347
(
2006
).
45.
D.
Solís
,
M. B.
Ferraro
, and
J. C.
Facelli
,
J. Mol. Struct.
602-603
,
159
(
2002
).
46.
C. J.
Pickard
and
F.
Mauri
,
Phys. Rev. B
63
,
245101
(
2001
).
47.
J. R.
Yates
,
C. J.
Pickard
, and
F.
Mauri
,
Phys. Rev. B
76
,
024401
(
2007
).
48.
J. D.
Hartman
and
G. J. O.
Beran
,
J. Chem. Theory Comput.
10
,
4862
(
2014
).
49.
J. D.
Hartman
,
S.
Monaco
,
B.
Schatschneider
, and
G. J. O.
Beran
,
J. Chem. Phys.
143
,
102809
(
2015
).
50.
J. D.
Hartman
,
R. A.
Kudla
,
G. M.
Day
,
L. J.
Mueller
, and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
18
,
21686
(
2016
).
51.
J. D.
Hartman
,
A.
Balaji
, and
G. J. O.
Beran
,
J. Chem. Theory Comput.
13
,
6043
(
2017
).
52.
M.
Dračínský
,
P.
Unzueta
, and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
21
,
14992
(
2019
).
53.
D.
Zhao
,
R.
Song
,
W.
Li
,
J.
Ma
,
H.
Dong
, and
S.
Li
,
J. Chem. Theory Comput.
13
,
5231
(
2017
).
54.
D.
Zhao
,
X.
Shen
,
Z.
Cheng
,
W.
Li
,
H.
Dong
, and
S.
Li
,
J. Chem. Theory Comput.
16
,
2995
(
2020
).
55.
D.
Stueber
and
D. M.
Grant
,
J. Am. Chem. Soc.
124
,
10539
(
2002
).
56.
J. K.
Harper
,
R.
Iuliucci
,
M.
Gruber
, and
K.
Kalakewich
,
CrystEngComm
15
,
8693
(
2013
).
57.
K.
Masuda
,
S.
Tabata
,
H.
Kono
,
Y.
Sakata
,
T.
Hayase
,
E.
Yonemochi
, and
K.
Terada
,
Int. J. Pharm.
318
,
146
(
2006
).
58.
A.
Naito
,
S.
Ganapathy
,
K.
Akasaka
, and
C. A.
McDowell
,
J. Chem. Phys.
74
,
3190
(
1981
).
59.
X.
Chen
and
C.-G.
Zhan
,
J. Mol. Struct.: THEOCHEM
682
,
73
(
2004
).
60.
R. J.
Iuliucci
,
C. G.
Phung
,
J. C.
Facelli
, and
D. M.
Grant
,
J. Am. Chem. Soc.
120
,
9305
(
1998
).
61.
N.
Janes
,
S.
Ganapathy
, and
E.
Oldfield
,
J. Magn. Reson.
54
,
111
(
1983
).
62.
A.
Naito
and
C. A.
McDowell
,
J. Chem. Phys.
81
,
4795
(
1984
).
63.
E.
Salager
,
R. S.
Stein
,
C. J.
Pickard
,
B.
Elena
, and
L.
Emsley
,
Phys. Chem. Chem. Phys.
11
,
2610
(
2009
).
64.
J. R.
Yates
,
S. E.
Dobbins
,
C. J.
Pickard
,
F.
Mauri
,
P. Y.
Ghi
, and
R. K.
Harris
,
Phys. Chem. Chem. Phys.
7
,
1402
(
2005
).
65.
E.
Carignani
,
S.
Borsacchi
,
J. P.
Bradley
,
S. P.
Brown
, and
M.
Geppi
,
J. Phys. Chem. C
117
,
17731
(
2013
).
66.
A.-C.
Uldry
,
J. M.
Griffin
,
J. R.
Yates
,
M.
Pérez-Torralba
,
M. D.
Santa María
,
A. L.
Webber
,
M. L. L.
Beaumont
,
A.
Samoson
,
R. M.
Claramunt
,
C. J.
Pickard
, and
S. P.
Brown
,
J. Am. Chem. Soc.
130
,
945
(
2008
).
67.
A. S.
Tatton
,
T. N.
Pham
,
F. G.
Vogt
,
D.
Iuga
,
A. J.
Edwards
, and
S. P.
Brown
,
CrystEngComm
14
,
2654
(
2012
).
68.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
23
,
1623
(
2002
).
69.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
F.
WilliamsDing
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2011
.
70.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
71.
J. R.
Cheeseman
,
G. W.
Trucks
,
T. A.
Keith
, and
M. J.
Frisch
,
J. Chem. Phys.
104
,
5497
(
1996
).
72.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
73.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
74.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
75.
Y.
Zhang
,
A.
Wu
,
X.
Xu
, and
Y.
Yan
,
Chem. Phys. Lett.
421
,
383
(
2006
).
76.
J. A.
Vila
,
H. A.
Baldoni
, and
H. A.
Scheraga
,
J. Comput. Chem.
30
,
884
(
2009
).

Supplementary Material

You do not currently have access to this content.