In this study, the working mechanism of the first light-driven rotary molecular motors used to control an eight-base-pair DNA hairpin has been investigated. In particular, this linker was reported to have promising photophysical properties under physiological conditions, which motivated our work at the quantum mechanical level. Cistrans isomerization is triggered by photon absorption at wavelengths ranging 300 nm–400 nm, promoting the rotor to the first excited state, and it is mediated by an energy-accessible conical intersection from which the ground state is reached back. The interconversion between the resulting unstable isomer and its stable form occurs at physiological conditions in the ground state and is thermally activated. Here, we compare three theoretical frameworks, generally used in the quantum description of medium-size chemical systems: Linear-Response Time-Dependent Density Functional Theory (LR-TDDFT), Spin-Flip TDDFT (SF-TDDFT), and multistate complete active space second-order perturbation theory on state-averaged complete active space self consistent field wavefunctions (MS-CASPT2//SA-CASSCF). In particular, we show the importance of resorting to a multireference approach to study the rotational cycle of light-driven molecular motors due to the occurrence of geometries described by several configurations. We also assess the accuracy and computational cost of the SF-TDDFT method when compared to MS-CASPT2 and LR-TDDFT.

1.
W. A.
Velema
,
W.
Szymanski
, and
B. L.
Feringa
, “
Photopharmacology: Beyond proof of principle
,”
J. Am. Chem. Soc.
136
,
2178
2191
(
2014
).
2.
J.
Broichhagen
,
J. A.
Frank
, and
D.
Trauner
, “
A roadmap to success in photopharmacology
,”
Acc. Chem. Res.
48
,
1947
1960
(
2015
).
3.
Z. L.
Pianowski
, “
Recent implementations of molecular photoswitches into smart materials and biological systems
,”
Chem. Eur. J.
25
,
5128
5144
(
2019
).
4.
A.
Nair
,
P.
Chauhan
,
B.
Saha
, and
K. F.
Kubatzky
, “
Conceptual evolution of cell signaling
,”
Int. J. Mol. Sci.
20
,
3292
(
2019
).
5.
R.
Weissleder
and
V.
Ntziachristos
, “
Shedding light onto live molecular targets
,”
Nat. Med.
9
,
123
128
(
2003
).
6.
W.
Szymański
,
J. M.
Beierle
,
H. A. V.
Kistemaker
,
W. A.
Velema
, and
B. L.
Feringa
, “
Reversible photocontrol of biological systems by the incorporation of molecular photoswitches
,”
Chem. Rev.
113
,
6114
6178
(
2013
).
7.
F.
Hamon
,
F.
Djedaini-Pilard
,
F.
Barbot
, and
C.
Len
, “
Azobenzenes—synthesis and carbohydrate applications
,”
Tetrahedron
65
,
10105
10123
(
2009
).
8.
A. A.
Beharry
and
G. A.
Woolley
, “
Azobenzene photoswitches for biomolecules
,”
Chem. Soc. Rev.
40
,
4422
4437
(
2011
).
9.
C.
Renner
and
L.
Moroder
, “
Azobenzene as conformational switch in model peptides
,”
ChemBioChem
7
,
868
878
(
2006
).
10.
N.
Harada
,
N.
Koumura
, and
B. L.
Feringa
, “
Chemistry of unique chiral olefins. 3. Synthesis and absolute stereochemistry of trans- and cis-1,1‘,2,2‘,3,3‘,4,4‘- octahydro-3,3‘-dimethyl-4,4‘-biphenanthrylidenes
,”
J. Am. Chem. Soc.
119
,
7256
7264
(
1997
).
11.
N.
Koumura
,
R. W. J.
Zijlstra
,
R. A.
van Delden
,
N.
Harada
, and
B. L.
Feringa
, “
Light-driven monodirectional molecular rotor
,”
Nature
401
,
152
155
(
1999
).
12.
A. S.
Lubbe
,
Q.
Liu
,
S. J.
Smith
,
J. W.
de Vries
,
J. C. M.
Kistemaker
,
A. H.
de Vries
,
I.
Faustino
,
Z.
Meng
,
W.
Szymanski
,
A.
Herrmann
, and
B. L.
Feringa
, “
Photoswitching of DNA hybridization using a molecular motor
,”
J. Am. Chem. Soc.
140
,
5069
5076
(
2018
).
13.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
14.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
15.
B. O.
Roos
, “
The multiconfigurational (MC) self-consistent field (SCF) theory
,” in
Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry
, edited by
B. O.
Roos
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1992
), pp.
177
254
.
16.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd
,
2007
), pp.
399
445
.
17.
J.
Gräfenstein
and
D.
Cremer
, “
Can density functional theory describe multi-reference systems? Investigation of carbenes and organic biradicals
,”
Phys. Chem. Chem. Phys.
2
,
2091
2103
(
2000
).
18.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
,”
J. Chem. Phys.
118
,
4807
4818
(
2003
).
19.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
, “
General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
136
,
204103
(
2012
).
20.
X.
Zhang
and
J. M.
Herbert
, “
Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory
,”
J. Chem. Phys.
141
,
064104
(
2014
).
21.
J. M.
Herbert
,
X.
Zhang
,
A. F.
Morrison
, and
J.
Liu
, “
Beyond time-dependent density functional theory using only single excitations: Methods for computational studies of excited states in complex systems
,”
Acc. Chem. Res.
49
,
931
941
(
2016
).
22.
N.
Minezawa
and
M. S.
Gordon
, “
Optimizing conical intersections by spin-flip density functional theory: Application to ethylene
,”
J. Phys. Chem. A
113
,
12749
12753
(
2009
).
23.
D.
Casanova
and
A. I.
Krylov
, “
Spin-flip methods in quantum chemistry
,”
Phys. Chem. Chem. Phys.
22
,
4326
4342
(
2020
).
24.
Y.
Harabuchi
,
K.
Keipert
,
F.
Zahariev
,
T.
Taketsugu
, and
M. S.
Gordon
, “
Dynamics simulations with spin-flip time-dependent density functional theory: Photoisomerization and photocyclization mechanisms of cis-stilbene in ππ* states
,”
J. Phys. Chem. A
118
,
11987
11998
(
2014
).
25.
Y.
Li
,
F.
Liu
,
B.
Wang
,
Q.
Su
,
W.
Wang
, and
K.
Morokuma
, “
Different conical intersections control nonadiabatic photochemistry of fluorene light-driven molecular rotary motor: A CASSCF and spin-flip DFT study
,”
J. Chem. Phys.
145
,
244311
(
2016
).
26.
N.
Orms
and
A. I.
Krylov
, “
Singlet–triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory
,”
Phys. Chem. Chem. Phys.
20
,
13127
13144
(
2018
).
27.
E.
Salazar
and
S.
Faraji
, “
Theoretical study of cyclohexadiene/hexatriene photochemical interconversion using spin-flip time-dependent density functional theory
,”
Mol. Phys.
118
,
e1764120
(
2020
).
28.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
29.
T. N.
Truong
and
E. V.
Stefanovich
, “
A new method for incorporating solvent effect into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity
,”
Chem. Phys. Lett.
240
,
253
260
(
1995
).
30.
V.
Barone
and
M.
Cossi
, “
Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
,”
J. Phys. Chem. A
102
,
1995
2001
(
1998
).
31.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
 III,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
32.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
33.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
34.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
35.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
36.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
, “
A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
,”
Chem. Phys. Lett.
396
,
142
149
(
2004
).
37.
N.
Forsberg
and
P.-Å.
Malmqvist
, “
Multiconfiguration perturbation theory with imaginary level shift
,”
Chem. Phys. Lett.
274
,
196
204
(
1997
).
38.
F.
Aquilante
,
R.
Lindh
, and
T.
Bondo Pedersen
, “
Unbiased auxiliary basis sets for accurate two-electron integral approximations
,”
J. Chem. Phys.
127
,
114107
(
2007
).
39.
B. G.
Levine
,
J. D.
Coe
, and
T. J.
Martínez
, “
Optimizing conical intersections without derivative coupling vectors: Application to multistate multireference second-order perturbation theory (MS-CASPT2)
,”
J. Phys. Chem. B
112
,
405
413
(
2008
).
40.
M. J.
Bearpark
,
M. A.
Robb
, and
H.
Bernhard Schlegel
, “
A direct method for the location of the lowest energy point on a potential surface crossing
,”
Chem. Phys. Lett.
223
,
269
274
(
1994
).
41.
I. F.
Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. k.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
42.
T.
Shiozaki
, “
BAGEL: Brilliantly advanced general electronic-structure library
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
43.
S. A.
Mewes
,
F.
Plasser
,
A.
Krylov
, and
A.
Dreuw
, “
Benchmarking excited-state calculations using exciton properties
,”
J. Chem. Theory Comput.
14
,
710
725
(
2018
).
44.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
45.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
,
B. O.
Roos
, and
L.
Serrano-ANDRES
, “
Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds?
,”
Mol. Phys.
97
,
859
868
(
1999
).
46.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
8433
(
2004
).
47.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
A long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
3544
(
2001
).
48.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Assessment of a long-range corrected hybrid functional
,”
J. Chem. Phys.
125
,
234109
(
2006
).
49.
I. V.
Rostov
,
R. D.
Amos
,
R.
Kobayashi
,
G.
Scalmani
, and
M. J.
Frisch
, “
Studies of the ground and excited-state surfaces of the retinal chromophore using CAM-B3LYP
,”
J. Phys. Chem. B
114
,
5547
5555
(
2010
).
50.
I. V.
Rostov
,
R.
Kobayashi
, and
R. D.
Amos
, “
Comparing long-range corrected functionals in the cis–trans isomerisation of the retinal chromophore
,”
Mol. Phys.
110
,
2329
2336
(
2012
).
51.
Y.
Li
,
W.
Wang
, and
F.
Liu
, “
Exploring the mechanism of a chiral N-alkyl imine-based light-driven molecular rotary motor at MS-CASPT2//CASSCF and MS-CASPT2//(TD) DFT levels
,”
Chem. - Eur. J.
25
,
4194
4201
(
2019
).
52.
M.
Dierksen
and
S.
Grimme
, “
The vibronic structure of electronic absorption spectra of large molecules: A time-dependent density functional study on the influence of ‘exact’ Hartree−Fock exchange
,”
J. Phys. Chem. A
108
,
10225
10237
(
2004
).
53.
D. R.
Yarkony
, “
Diabolical conical intersections
,”
Rev. Mod. Phys.
68
,
985
1013
(
1996
).
54.
T. J.
Martinez
, “
Physical chemistry: Seaming is believing
,”
Nature
467
,
412
413
(
2010
).
55.
O.
Tishchenko
,
J.
Zheng
, and
D. G.
Truhlar
, “
Multireference model chemistries for thermochemical kinetics
,”
J. Chem. Theory Comput.
4
,
1208
1219
(
2008
).
56.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A.
38
,
3098
3100
(
1988
).
57.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).

Supplementary Material

You do not currently have access to this content.