Molecular-orbital-based machine learning (MOB-ML) provides a general framework for the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. The application of Nesbet’s theorem makes it possible to recast a typical extrapolation task, training on correlation energies for small molecules and predicting correlation energies for large molecules, into an interpolation task based on the properties of orbital pairs. We demonstrate the importance of preserving physical constraints, including invariance conditions and size consistency, when generating the input for the machine learning model. Numerical improvements are demonstrated for different datasets covering total and relative energies for thermally accessible organic and transition-metal containing molecules, non-covalent interactions, and transition-state energies. MOB-ML requires training data from only 1% of the QM7b-T dataset (i.e., only 70 organic molecules with seven and fewer heavy atoms) to predict the total energy of the remaining 99% of this dataset with sub-kcal/mol accuracy. This MOB-ML model is significantly more accurate than other methods when transferred to a dataset comprising of 13 heavy atom molecules, exhibiting no loss of accuracy on a size intensive (i.e., per-electron) basis. It is shown that MOB-ML also works well for extrapolating to transition-state structures, predicting the barrier region for malonaldehyde intramolecular proton-transfer to within 0.35 kcal/mol when only trained on reactant/product-like structures. Finally, the use of the Gaussian process variance enables an active learning strategy for extending the MOB-ML model to new regions of chemical space with minimal effort. We demonstrate this active learning strategy by extending a QM7b-T model to describe non-covalent interactions in the protein backbone–backbone interaction dataset to an accuracy of 0.28 kcal/mol.

1.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
2.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
3.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Assessment and validation of machine learning methods for predicting molecular atomization energies
,”
J. Chem. Theory Comput.
9
,
3404
(
2013
).
4.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Big data meets quantum chemistry approximations: The δ-machine learning approach
,”
J. Chem. Theory Comput.
11
,
2087
2096
(
2015
).
5.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
6.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
Bypassing the Kohn–Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
7.
K.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
Advances in Neural Information Processing Systems 30
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc.
,
2017
), pp.
991
1001
.
8.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
9.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
10.
R. T.
McGibbon
,
A. G.
Taube
,
A. G.
Donchev
,
K.
Siva
,
F.
Hernández
,
C.
Hargus
,
K.-H.
Law
,
J. L.
Klepeis
, and
D. E.
Shaw
, “
Improving the accuracy of Møller–Plesset perturbation theory with neural networks
,”
J. Chem. Phys.
147
,
161725
(
2017
).
11.
C. R.
Collins
,
G. J.
Gordon
,
O. A.
von Lilienfeld
, and
D. J.
Yaron
, “
Constant size descriptors for accurate machine learning models of molecular properties
,”
J. Chem. Phys.
148
,
241718
(
2018
).
12.
S.
Fujikake
,
V. L.
Deringer
,
T. H.
Lee
,
M.
Krynski
,
S. R.
Elliott
, and
G.
Csányi
, “
Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
,”
J. Chem. Phys.
148
,
241714
(
2018
).
13.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
, “
Hierarchical modeling of molecular energies using a deep neural network
,”
J. Chem. Phys.
148
,
241715
(
2018
).
14.
T. T.
Nguyen
,
E.
Székely
,
G.
Imbalzano
,
J.
Behler
,
G.
Csányi
,
M.
Ceriotti
,
A. W.
Götz
, and
F.
Paesani
, “
Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
,”
J. Chem. Phys.
148
,
241725
(
2018
).
15.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
, “
Transferability in machine learning for electronic structure via the molecular orbital basis
,”
J. Chem. Theory Comput.
14
,
4772
4779
(
2018
).
16.
Z.
Wu
,
B.
Ramsundar
,
E. N.
Feinberg
,
J.
Gomes
,
C.
Geniesse
,
A. S.
Pappu
,
K.
Leswing
, and
V.
Pande
, “
MoleculeNet: A benchmark for molecular machine learning
,”
Chem. Sci.
9
,
513
530
(
2018
).
17.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
, “
The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
,”
Chem. Sci.
9
,
2261
2269
(
2018
).
18.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
, “
A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
,”
J. Chem. Phys.
150
,
131103
(
2019
).
19.
L.
Cheng
,
N. B.
Kovachki
,
M.
Welborn
, and
T. F.
Miller
 III
, “
Regression clustering for improved accuracy and training costs with molecular-orbital-based machine learning
,”
J. Chem. Theory Comput.
15
,
6668
6677
(
2019
).
20.
A. S.
Christensen
,
F. A.
Faber
, and
O. A.
von Lilienfeld
, “
Operators in quantum machine learning: Response properties in chemical space
,”
J. Chem. Phys.
150
,
064105
(
2019
).
21.
A.
Grisafi
,
A.
Fabrizio
,
B.
Meyer
,
D. M.
Wilkins
,
C.
Corminboeuf
, and
M.
Ceriotti
, “
Transferable machine-learning model of the electron density
,”
ACS Cent. Sci.
5
,
57
64
(
2019
).
22.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
2903
(
2019
).
23.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
24.
A.
Fabrizio
,
B.
Meyer
, and
C.
Corminboeuf
, “
Machine learning models of the energy curvature vs particle number for optimal tuning of long-range corrected functionals
,”
J. Chem. Phys.
152
,
154103
(
2020
).
25.
Y.
Chen
,
L.
Zhang
,
H.
Wang
, and
W. E
, “
Ground state energy functional with Hartree–Fock efficiency and chemical accuracy
,”
J. Phys. Chem. A
124
,
7155
7165
(
2020
).
26.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
27.
S.
Dick
and
M.
Fernandez-Serra
, “
Machine learning accurate exchange and correlation functionals of the electronic density
,”
Nat. Commun.
11
,
3509
(
2020
).
28.
Z.
Liu
,
L.
Lin
,
Q.
Jia
,
Z.
Cheng
,
Y.
Jiang
,
Y.
Guo
, and
J.
Ma
, “
Transferable multi-level attention neural network for accurate prediction of quantum chemistry properties via multi-task learning
,” chemRxiv:12588170.v1 (
2020
).
29.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
 III
, “
OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features
,”
J. Chem. Phys.
153
,
124111
(
2020
).
30.
S.
Manzhos
, “
Machine learning for the solution of the Schrödinger equation
,”
Mach. Learn.: Sci. Technol.
1
,
013002
(
2020
).
31.
R. K.
Nesbet
, “
‘Brueckner’s theory and the method of superposition of configurations
,”
Phys. Rev.
109
,
1632
1638
(
1958
).
32.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
(
1934
).
33.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
,
2006
), Publication Title: Gaussian processes for machine learning.
34.
E.
Kapuy
,
Z.
Csépes
, and
C.
Kozmutza
, “
Application of the many-body perturbation theory by using localized orbitals
,”
Int. J. Quantum Chem.
23
,
981
(
1983
).
35.
R. J.
Bartlett
, “
Many-Body perturbation theory and coupled cluster theory for electron correlation in molecules
,”
Annu. Rev. Phys. Chem.
32
,
359
401
(
1981
).
36.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
Mineola
,
1996
), pp.
261
265
.
37.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
38.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
, “
Thermalized (350K) QM7b, GDB-13, water, and short alkane quantum chemistry dataset including MOB-ML features
,”
CaltechDATA, Dataset
.
39.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
K. M.
Merz
, and
C. D.
Sherrill
, “
The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions
,”
J. Chem. Phys.
147
,
161727
(
2017
).
40.
J. P.
Janet
and
H. J.
Kulik
, “
Predicting electronic structure properties oftransition metal complexes with neural networks
,”
Chem. Sci.
8
,
5137
5152
(
2017
).
41.
T.
Husch
,
J.
Sun
,
L.
Cheng
,
S. J. R.
Lee
, and
T. F.
Miller
 III
(
2020
). “
QM7b-T, GDB-13-T, TM-T, malonaldehyde, BBI, and short alkanes quantumBBI, and short alkanes quantum chemistry dataset including MOB-ML features
,” CaltechDATA, Dataset. .
42.
F. R.
Manby
,
T. F.
Miller
 III
,
P.
Bygrave
,
F.
Ding
,
T.
Dresselhaus
,
F.
Batista-Romero
,
A.
Buccheri
,
C.
Bungey
,
S. J. R.
Lee
,
R.
Meli
,
K.
Miyamoto
,
C.
Steinmann
,
T.
Tsuchiya
,
M.
Welborn
,
T.
Wiles
, and
Z.
Williams
, “
Entos: A quantum molecular simulation package
,” chemRxiv:7762646.v2 (
2019
).
43.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
44.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
45.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
46.
F.
Weigend
, “
Accurate coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
47.
S. F.
Boys
, “
Construction of some molecular orbitals to Be approximately invariant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
299
(
1960
).
48.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
302
(
1960
).
49.
G.
Knizia
, “
Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts
,”
J. Chem. Theory Comput.
9
,
4834
(
2013
).
50.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
, and
others
, MOLPRO, Version 2018.3, A Package of Ab Initio Programs,
Cardiff
,
UK
,
2018
.
51.
H.-J.
Werner
,
P. J.
Knowles
,
F. B.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Hesselmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
 III
,
A.
Mitrushchenkov
,
Peterson
,
I.
Polyak
,
M.
Rauhut
, and
G.
Sibaev
, “
The MOLPRO quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
52.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
, “
Fast linear scaling second-order Møller–Plesset perturbation theory (MP2) using local and density fitting approximations
,”
J. Chem. Phys.
118
,
8149
(
2003
).
53.
G. E.
Scuseria
and
T. J.
Lee
, “
Comparison of coupled-cluster methods which include the effects of connected triple excitations
,”
J. Chem. Phys.
93
,
5851
5855
(
1990
).
54.
C.
Hampel
and
H. J.
Werner
, “
Local treatment of electron correlation in coupled cluster theory
,”
J. Chem. Phys.
104
,
6286
6297
(
1996
).
55.
M.
Schütz
and
H.-J.
Werner
, “
Local perturbative triples correction (t) with linear cost scaling
,”
Chem. Phys. Lett.
318
,
370
378
(
2000
).
56.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in python (v0.21.2)
,”
J. Mach. Learn. Res.
12
,
2825
(
2011
).
57.
GPy, GPy: A Gaussian Process Framework in Python,
2012
.
58.
A.
Shapeev
,
K.
Gubaev
,
E.
Tsymbalov
, and
E.
Podryabinkin
, “
Active learning and uncertainty estimation
,” in
Machine Learning Meets Quantum Physics
, edited by
K. T.
Schütt
,
S.
Chmiela
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
,
K.
Tsuda
and
K.-R.
Müller
(
Springer Nature Switzerland AG.
,
2020
), pp.
309
329
.
59.
L.
Hirschfeld
,
K.
Swanson
,
K.
Yang
,
R.
Barzilay
, and
C. W.
Coley
, “
Uncertainty quantification using neural networks for molecular property prediction
,”
J. Chem. Inf. Model.
60
,
3770
3780
(
2020
).
60.
J.-L.
Reymond
, “
The chemical space project
,”
Acc. Chem. Res.
48
,
722
730
(
2015
).
61.
L. C.
Blum
and
J.-L.
Reymond
, “
970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
,”
J. Am. Chem. Soc.
131
,
8732
(
2009
).
62.
S. J. R.
Lee
,
T.
Husch
,
F.
Ding
, and
T. F.
Miller
 III
, “
Analytical gradients for molecular-orbital-based machine learning
,” arXiv:2012.08899 (
2020
).
63.
T.
Weymuth
,
E. P. A.
Couzijn
,
P.
Chen
, and
M.
Reiher
, “
New benchmark set of transition-metal coordination reactions for the assessment of density functionals
,”
J. Chem. Theory Comput.
10
,
3092
3103
(
2014
).
64.
T.
Husch
,
L.
Freitag
, and
M.
Reiher
, “
Calculation of ligand dissociation energies in large transition-metal complexes
,”
J. Chem. Theory Comput.
14
,
2456
2468
(
2018
).
65.
R. J.
Bartlett
and
D. S.
Ranasinghe
, “
The power of exact conditions in electronic structure theory
,”
Chem. Phys. Lett.
669
,
54
70
(
2017
).

Supplementary Material

You do not currently have access to this content.