The recently proposed r2SCAN meta-generalized-gradient approximation (mGGA) of Furness and co-workers is used to construct an efficient composite electronic-structure method termed r2SCAN-3c. To this end, the unaltered r2SCAN functional is combined with a tailor-made triple-ζ Gaussian atomic orbital basis set as well as with refitted D4 and geometrical counter-poise corrections for London-dispersion and basis set superposition error. The performance of the new method is evaluated for the GMTKN55 database covering large parts of chemical space with about 1500 data points, as well as additional benchmarks for non-covalent interactions, organometallic reactions, and lattice energies of organic molecules and ices, as well as for the adsorption on polar salt and non-polar coinage-metal surfaces. These comprehensive tests reveal a spectacular performance and robustness of r2SCAN-3c: It by far surpasses its predecessor B97-3c at only twice the cost and provides one of the best results of all semi-local density-functional theory (DFT)/QZ methods ever tested for the GMTKN55 database at one-tenth of the cost. Specifically, for reaction and conformational energies as well as non-covalent interactions, it outperforms prominent hybrid-DFT/QZ approaches at two to three orders of magnitude lower cost. Perhaps, the most relevant remaining issue of r2SCAN-3c is self-interaction error (SIE), owing to its mGGA nature. However, SIE is slightly reduced compared to other (m)GGAs, as is demonstrated in two examples. After all, this remarkably efficient and robust method is chosen as our new group default, replacing previous composite DFT and partially even expensive high-level methods in most standard applications for systems with up to several hundreds of atoms.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
2.
3.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
4.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
5.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
6.
R.
Paverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc. A
372
,
20120476
(
2013
).
7.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
(
2016
).
8.
J.
Klimeš
and
A.
Michaelides
,
J. Chem. Phys.
137
,
120901
(
2012
).
10.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
).
11.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
,
J. Chem. Phys.
143
,
054107
(
2015
).
12.
J. G.
Brandenburg
,
E.
Caldeweyher
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
18
,
15519
(
2016
).
13.
E.
Caldeweyher
and
J. G.
Brandenburg
,
J. Phys.: Condens. Matter
30
,
213001
(
2018
).
14.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
148
,
064104
(
2018
).
15.
J.
Hostaš
and
J.
Řezáč
,
J. Chem. Theory Comput.
13
,
3575
(
2017
).
16.
J.
Witte
,
J. B.
Neaton
, and
M.
Head-Gordon
,
J. Chem. Phys.
146
,
234105
(
2017
).
17.
A.
Otero-de-la-Roza
and
G. A.
DiLabio
,
J. Chem. Theory Comput.
13
,
3505
(
2017
).
18.
K.
Miyamoto
,
T. F.
Miller
, and
F. R.
Manby
,
J. Chem. Theory Comput.
12
,
5811
(
2016
).
19.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
20.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
,
J. Chem. Phys.
150
,
154122
(
2019
).
21.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
136
,
154101
(
2012
).
22.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
,
J. Phys. Chem. Lett.
11
,
8208
(
2020
).
23.
M.
Korth
and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
993
(
2009
).
24.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
25.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
,
Science
355
,
49
(
2017
).
26.
D.
Mejía-Rodríguez
and
S. B.
Trickey
,
J. Chem. Phys. A
124
,
9889
(
2020
).
27.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
28.
A.
Najibi
and
L.
Goerigk
,
J. Comput. Chem.
41
,
2562
(
2020
).
29.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
154108
(
2007
).
30.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
124108
(
2007
).
31.
S.
Ehlert
,
U.
Huniar
,
J.
Ning
,
J. W.
Furness
,
J.
Sun
,
A. D.
Kaplan
,
J. P.
Perdew
, and
J. G.
Brandenburg
, “
r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications
,”
J. Chem. Phys.
(to be published); arXiv:2012.09249 (
2020
).
32.
S.
Vuckovic
and
K.
Burke
,
J. Phys. Chem. Lett.
11
,
9957
(
2020
).
33.
R.
Sure
and
S.
Grimme
,
J. Chem. Theory Comput.
11
,
3785
(
2015
).
34.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
35.
R. E.
Easton
,
D. J.
Giesen
,
A.
Welch
,
C. J.
Cramer
, and
D. G.
Truhlar
,
Theor. Chim. Acta
93
,
281
(
1996
).
36.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
(
2014
).
37.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
38.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
39.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
).
40.
Y.
Muto
,
J. Phys. Math. Soc. Jpn.
17
,
629
(
1943
).
41.
J.
Řezáč
,
Y.
Huang
,
P.
Hobza
, and
G. J. O.
Beran
,
J. Chem. Theory Comput.
11
,
3065
(
2015
).
42.
R. A.
DiStasio
,
V. V.
Gobre
, and
A.
Tkatchenko
,
J. Phys.: Condens. Matter
26
,
213202
(
2014
).
43.
J. F.
Dobson
,
Int. J. Quantum Chem.
114
,
1157
(
2014
).
44.
M. R.
Kennedy
,
A. R.
McDonald
,
A. E.
DePrince
,
M. S.
Marshall
,
R.
Podeszwa
, and
C. D.
Sherrill
,
J. Chem. Phys.
140
,
121104
(
2014
).
45.
J. F.
Gonthier
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
15
,
4351
(
2019
).
46.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
47.
D. E.
Taylor
,
J. G.
Ángyán
,
G.
Galli
,
C.
Zhang
,
F.
Gygi
,
K.
Hirao
,
J. W.
Song
,
K.
Rahul
,
O.
Anatole von Lilienfeld
, and
R.
Podeszwa
,
J. Chem. Phys.
145
,
124105
(
2016
).
48.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
4285
(
2012
).
49.
J.
Řezáč
,
J. Chem. Theory Comput.
16
,
6305
(
2020
).
50.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3364
(
2013
).
51.
V. M.
Miriyala
and
J.
Řezáč
,
J. Phys. Chem. A
122
,
2801
(
2018
).
52.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
53.
TURBOMOLE V7.4 2019, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, online available from http://www.turbomole.com; accessed 10 December 2020.
54.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
55.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
56.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
57.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
58.
F.
Neese
,
ORCA: An Ab Initio, DFT and Semiempirical Electronic Structure Package
, version 4.2.1 (
Max Planck Institut für Kohlenforschung
,
Mülheim, Germany
,
2020
).
59.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
2018
).
60.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
61.
See https://github.com/grimme-lab/xtb for Semiempirical Extended Tight-Binding Program Package xtb; accessed 20 October 2020.
62.
R.
Łazarski
,
A. M.
Burow
, and
M.
Sierka
,
J. Chem. Theory Comput.
11
,
3029
(
2015
).
63.
R.
Łazarski
,
A. M.
Burow
,
L.
Grajciar
, and
M.
Sierka
,
J. Comput. Chem.
37
,
2518
(
2016
).
64.
A. M.
Burow
and
M.
Sierka
,
J. Chem. Theory Comput.
7
,
3097
(
2011
).
65.
A.
Zen
,
J. G.
Brandenburg
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
, and
A.
Michaelides
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
1724
(
2018
).
66.
G. A.
Dolgonos
,
J.
Hoja
, and
A. D.
Boese
,
Phys. Chem. Chem. Phys.
21
,
24333
(
2019
).
67.
J. G.
Brandenburg
,
T.
Maas
, and
S.
Grimme
,
J. Chem. Phys.
142
,
124104
(
2015
).
68.
O. A.
Vydrov
and
T.
Van Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
69.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
70.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
71.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
72.
G.
Kresse
and
J.
Furthmüller
,
Comput. Math. Sci.
6
,
15
(
1996
).
73.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
74.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
75.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
76.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
18
,
20905
(
2016
).
77.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Phys. Chem. A
119
,
2058
(
2015
).
78.
S.
Grimme
and
M.
Steinmetz
,
Phys. Chem. Chem. Phys.
15
,
16031
(
2013
).
79.
T.
Risthaus
,
M.
Steinmetz
, and
S.
Grimme
,
J. Comput. Chem.
35
,
1509
(
2014
).
80.
M.
Bühl
and
H.
Kabrede
,
J. Chem. Theory Comput.
2
,
1282
(
2006
).
81.
P.
Jurečka
,
J.
Šponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
82.
J.
Antony
and
S.
Grimme
,
J. Chem. Phys. A
111
,
4862
(
2007
).
83.
G.
Santra
,
N.
Sylvetsky
, and
J. M. L.
Martin
,
J. Chem. Phys. A
123
,
5129
(
2019
).
84.
E.
Caldeweyher
,
S.
Spicher
,
A.
Hansen
, and
S.
Grimme
, “
Application of London dispersion corrected density functional theory for inter- and intra-molecular ion-π interactions
,” chemRxiv:13497135 (
2020
).
85.
A.
Karton
and
J. M. L.
Martin
,
J. Chem. Phys.
136
,
124114
(
2012
).
86.
S.
Grimme
,
W.
Hujo
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
14
,
4875
(
2012
).
87.
V. M.
Miriyala
and
J.
Řezáč
,
J. Chem. Phys. A
122
,
9585
(
2018
).
88.
Y. S.
Al-Hamdani
,
P. R.
Nagy
,
D.
Barton
,
M.
Kallay
,
J. G.
Brandenburg
, and
A.
Tkatchenko
, “
Interactions between large molecules: Puzzle for reference quantum-mechanical methods
,” arXiv:2009.08927 (
2020
).
89.
J.
Řezáč
,
D.
Bim
,
O.
Gutten
, and
L.
Rulisek
,
J. Chem. Theory Comput.
14
,
1254
(
2018
).
90.
D. I.
Sharapa
,
A.
Genaev
,
L.
Cavallo
, and
Y.
Minenkov
,
ChemPhysChem
20
,
92
(
2019
).
91.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
92.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
,
011101
(
2018
).
93.
F.
Pavosevic
,
C.
Peng
,
P.
Pinski
,
C.
Riplinger
,
F.
Neese
, and
E. F.
Valeev
,
J. Chem. Phys.
146
,
174108
(
2017
).
94.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
95.
M.
Bursch
,
A.
Hansen
,
P.
Pracht
,
J. T.
Kohn
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
23
,
287
(
2020
).
96.
S.
Grimme
,
C.
Bannwarth
,
S.
Dohm
,
A.
Hansen
,
J.
Pisarek
,
P.
Pracht
,
J.
Seibert
, and
F.
Neese
,
Angew. Chem., Int. Ed.
56
,
14763
(
2017
).
97.
S.
Dohm
,
A.
Hansen
,
M.
Steinmetz
,
S.
Grimme
, and
M. P.
Checinski
,
J. Chem. Theory Comput.
14
,
2596
(
2018
).
98.
E.
Caldeweyher
,
J.-M.
Mewes
,
S.
Ehlert
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
22
,
8499
(
2020
).
99.
W. Y.
Lee
and
L. J.
Slutsky
,
J. Chem. Phys.
79
,
2602
(
1975
).
100.
A.
Otero-De-La-Roza
and
E. R.
Johnson
,
J. Chem. Phys.
137
,
054103
(
2012
).
101.
A. M.
Reilly
and
A.
Tkatchenko
,
J. Chem. Phys.
139
,
024705
(
2013
).
102.
D. J.
Carter
and
A. L.
Rohl
,
J. Chem. Theory Comput.
10
,
3423
(
2014
).
103.
F.
Maass
,
Y.
Jiang
,
W.
Liu
,
A.
Tkatchenko
, and
P.
Tegeder
,
J. Chem. Phys.
148
,
214703
(
2018
).
104.
J.
Laun
,
D.
Vilela Oliveira
, and
T.
Bredow
,
J. Comput. Chem.
39
,
1285
(
2018
).
105.
J.
Heidberg
,
M.
Kandel
,
D.
Meine
, and
U.
Wildt
,
Surf. Sci.
331-333
,
1467
(
1995
).
106.
G.
Spoto
,
E. N.
Gribov
,
G.
Ricchiardi
,
A.
Damin
,
D.
Scarano
,
S.
Bordiga
,
C.
Lamberti
, and
A.
Zecchina
,
Prog. Surf. Sci.
76
,
71
(
2004
).
107.
M.
Sterrer
,
T.
Risse
, and
H.-J.
Freund
,
Appl. Catal. A
307
,
58
(
2006
).
108.
P.
Ugliengo
and
A.
Damin
,
Chem. Phys. Lett.
366
,
683
(
2002
).
109.
R.
Valero
,
J. R. B.
Gomes
,
D. G.
Truhlar
, and
F.
Illas
,
J. Chem. Phys.
129
,
124710
(
2008
).
110.
B.
Civalleri
,
L.
Maschio
,
P.
Ugliengo
, and
C. M.
Zicovich-Wilson
,
Phys. Chem. Chem. Phys.
12
,
6382
(
2010
).
111.
V.
Staemmler
,
J. Phys. Chem. A
115
,
7153
(
2011
).
112.
A. D.
Boese
and
J.
Sauer
,
Phys. Chem. Chem. Phys.
15
,
16481
(
2013
).
113.
Z.
Dohnálek
,
G. A.
Kimmel
,
S. A.
Joyce
,
P.
Ayotte
,
R. S.
Smith
, and
B. D.
Kay
,
J. Phys. Chem. B
105
,
3747
(
2001
).
114.
S. K.
Dunn
and
G. E.
Ewing
,
J. Phys. Chem.
96
,
5284
(
1992
).
115.
A. G.
Cabello-Cartagena
,
J.
Vogt
, and
H.
Weiss
,
J. Chem. Phys.
132
,
074706
(
2010
).
116.
S.
Ehrlich
,
J.
Moellmann
,
W.
Reckien
,
T.
Bredow
, and
S.
Grimme
,
ChemPhysChem
12
,
3414
(
2011
).
117.
See https://github.com/grimme-lab/gcp for Geometrical Counter-Poise Correction gcp; accessed 20 October 2020.
118.
See https://github.com/dftd4/dftd4 for Generally Applicable Atomic-Charge Dependent London Dispersion Correction dftd4; accessed 20 October 2020.
119.
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
22
,
7169
(
2020
).

Supplementary Material

You do not currently have access to this content.