Ionic liquid (IL)-based solid polymer electrolytes (SPE) with stable thermal properties and low electrical resistivity have been evaluated. Two candidates for the polymer component of the SPE, poly(ethylene glycol) diacrylate (PEGDA) and Nafion, were considered. Differential scanning calorimetry analysis and electrical resistivity tests revealed that PEGDA, in comparison to Nafion, enables the formation of uniform SPEs with lower electrical resistivity and better thermal stability within a range of 25 °C–170 °C. Therefore, PEDGA was selected for further evaluation of the IL component effect on the resulting SPE. Six IL candidates, including 1-butyl-3-methylimidazolium methanesulfonate ± methanesulfonic acid (BMIM.MS ± MSA), diethylmethylammonium triflate ±bis(trifluoromethanesulfonyl)imine (Dema.OTF±HTFSI), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ± bis(trifluoromethanesulfonyl)imine (BMIM.TFSI ± HTFSI), were selected to test the effect of hydrophobicity/hydrophilicity of the IL on the resulting SPE. Fourier transformation infrared spectrometer analysis revealed that the BMIM.MSA-based electrolytes have the highest tendency to absorb from the environment and keep the moisture, while Dema.OTF has the fastest curing time. The SPE candidates were further evaluated for absorption characteristics of different gasses and vapors, such as N2, O2, ethanol vapor, and diluted CO/N2, that were tested with the in situ quartz crystal microbalance (QCM) technique. Among all six candidates, BMIM.MS showed the largest N2 and O2 absorption capacity from the environment. Dema.OTF + HTFSI, meanwhile, demonstrated a higher level of interactions with the ethanol vapor. In the case of CO/N2, QCM analysis revealed that BMIM.MS+MSA has the largest, ∼13 µg/cm2, absorption capacity that is reached within 400 s of being exposed to the gas mixture.

1.
P.
Yao
,
H.
Yu
,
Z.
Ding
,
Y.
Liu
,
J.
Lu
,
M.
Lavorgna
,
J.
Wu
, and
X.
Liu
, “
Review on polymer-based composite electrolytes for lithium batteries
,”
Front. Chem.
7
,
522
(
2019
).
2.
R. C.
Agrawal
and
G. P.
Pandey
, “
Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview
,”
J. Phys. D: Appl. Phys.
41
,
223001
(
2008
).
3.
T. F.
Fuller
and
J.
Newman
, “
Water and thermal management in solid-polymer-electrolyte fuel cells
,”
J. Electrochem. Soc.
140
,
1218
(
1993
).
4.
B.
Smitha
,
S.
Sridhar
, and
A. A.
Khan
, “
Solid polymer electrolyte membranes for fuel cell applications—a review
,”
J. Membr. Sci.
259
,
10
26
(
2005
).
5.
H.
Yan
and
C.-C.
Liu
, “
A solid polymer electrolyte-bases electrochemical carbon monoxide sensor
,”
Sens. Actuators, B
17
,
165
168
(
1994
).
6.
K.
Murata
,
S.
Izuchi
, and
Y.
Yoshihisa
, “
An overview of the research and development of solid polymer electrolyte batteries
,”
Electrochim. Acta
45
,
1501
1508
(
2000
).
7.
J.
Wan
,
J.
Xie
,
X.
Kong
,
Z.
Liu
,
K.
Liu
,
F.
Shi
,
A.
Pei
,
H.
Chen
,
W.
Chen
,
J.
Chen
,
X.
Zhang
,
L.
Zong
,
J.
Wang
,
L.-Q.
Chen
,
J.
Qin
, and
Y.
Cui
, “
Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries
,”
Nat. Nanotechnol.
14
,
705
711
(
2019
).
8.
J.
Zhang
,
J.
Zhao
,
L.
Yue
,
Q.
Wang
,
J.
Chai
,
Z.
Liu
,
X.
Zhou
,
H.
Li
,
Y.
Guo
,
G.
Cui
, and
L.
Chen
, “
Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
,”
Adv. Energy Mater.
5
,
1501082
(
2015
).
9.
M.
Armand
, “
Polymers with ionic conductivity
,”
Adv. Mater.
2
,
278
286
(
1990
).
10.
B.
Sandner
,
T.
Steurich
,
K.
Wiesner
, and
H.
Bischoff
, “
Solid polymer electrolytes based on oligo (ethylene glycol) methacrylates
,”
Polym. Bull.
28
,
355
360
(
1992
).
11.
M.
Watanabe
,
M.
Kanba
,
K.
Nagaoka
, and
I.
Shinohara
, “
Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application
,”
J. Appl. Polym. Sci.
27
,
4191
4198
(
1982
).
12.
C.
Piedrahita
,
V.
Kusuma
,
H. B.
Nulwala
, and
T.
Kyu
, “
Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-co-thiosiloxane network
,”
Solid State Ionics
322
,
61
68
(
2018
).
13.
R. S.
Yeo
, “
Ion clustering and proton transport in Nafion membranes and its applications as solid polymer electrolyte
,”
J. Electrochem. Soc.
130
,
533
(
1983
).
14.
E.
Peled
, “
Film forming reaction at the lithium/electrolyte interface
,”
J. Power Sources
9
,
253
266
(
1983
).
15.
Y.-S.
Ye
,
C.-Y.
Tseng
,
W.-C.
Shen
,
J.-S.
Wang
,
K.-J.
Chen
,
M.-Y.
Cheng
,
J.
Rick
,
Y.-J.
Huang
,
F.-C.
Chang
, and
B.-J.
Hwang
, “
A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes
,”
J. Mater. Chem.
21
,
10448
10453
(
2011
).
16.
P. K.
Singh
,
K.-W.
Kim
, and
H.-W.
Rhee
, “
Development and characterization of ionic liquid doped solid polymer electrolyte membranes for better efficiency
,”
Synth. Met.
159
,
1538
1541
(
2009
).
17.
Y.-S.
Ye
,
J.
Rick
, and
B.-J.
Hwang
, “
Ionic liquid polymer electrolytes
,”
J. Mater. Chem. A
1
,
2719
2743
(
2013
).
18.
D.
Sun
and
J.
Zhou
, “
Ionic liquid confined in nafion: Toward molecular-level understanding
,”
AlChE J.
59
,
2630
2639
(
2013
).
19.
V. K.
Singh
,
S.
Shalu
, and
S. K.
Chaurasia
, and
R. K.
Singh
, “
Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries
,”
RSC Adv.
6
,
40199
40210
(
2016
).
20.
W. H.
Meyer
, “
Polymer electrolytes for lithium-ion batteries
,”
Adv. Mater.
10
,
439
448
(
1998
).
21.
K.
Jacques
,
T.
Joy
,
A.
Shirani
, and
D.
Berman
, “
Effect of water incorporation on the lubrication characteristics of synthetic oils
,”
Tribol. Lett.
67
,
105
(
2019
).
22.
Y.
She
,
J.
Lee
,
B.
Lee
,
B.
Diroll
,
T.
Scharf
,
E. V.
Shevchenko
, and
D.
Berman
, “
Effect of the micelle opening in self-assembled amphiphilic block Co-polymer films on the infiltration of inorganic precursors
,”
Langmuir
35
,
796
803
(
2019
).
23.
J.
Krim
, “
Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films
,”
Adv. Phys.
61
,
155
323
(
2012
).
24.
J.
Lee
,
A.
Kuchibhotla
,
D.
Banerjee
, and
D.
Berman
, “
Silica nanoparticles as copper corrosion inhibitors
,”
Mater. Res. Express
6
,
0850e3
(
2019
).
25.
J.
Krim
and
A.
Widom
, “
Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity
,”
Phys. Rev. B
38
,
12184
12189
(
1988
).
26.
Y.
She
,
J.
Lee
,
B. T.
Diroll
,
T. W.
Scharf
,
E. V.
Shevchenko
, and
D.
Berman
, “
Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis
,”
Nanotechnology
29
,
495703
(
2018
).
27.
H.
Takenaka
,
E.
Torikai
,
Y.
Kawami
, and
N.
Wakabayashi
, “
Solid polymer electrolyte water electrolysis
,”
Int. J. Hydrogen Energy
7
,
397
403
(
1982
).
28.
E.
Rasten
,
G.
Hagen
, and
R.
Tunold
, “
Electrocatalysis in water electrolysis with solid polymer electrolyte
,”
Electrochim. Acta
48
,
3945
3952
(
2003
).
30.
T.
Sakai
,
H.
Takenaka
,
N.
Wakabayashi
,
Y.
Kawami
, and
E.
Torikai
, “
Gas permeation properties of solid polymer electrolyte (SPE) membranes
,”
J. Electrochem. Soc.
132
,
1328
(
1985
).
31.
J.
Lee
,
M.
Atmeh
, and
D.
Berman
, “
Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment
,”
Carbon
120
,
11
16
(
2017
).
32.
D.
Berman
and
E.
Shevchenko
, “
Design of functional composite and all-inorganic nanostructured materials via infiltration of polymer templates with inorganic precursors
,”
J. Mater. Chem. C
8
,
10604
(
2020
).
33.
Y.
She
,
E. D.
Goodman
,
J.
Lee
,
B. T.
Diroll
,
M.
Cargnello
,
E. V.
Shevchenko
, and
D.
Berman
, “
Block-copolymer assisted synthesis of all inorganic highly porous heterostructures with highly accessible thermally stable functional centers
,”
ACS Appl. Mater. Interfaces
11
,
30154
(
2019
).

Supplementary Material

You do not currently have access to this content.