The thermal conductivity of model argon nanowires over a wide range of temperatures from 20 K to 70 K has been calculated using the formula obtained by solving the Boltzmann equation and independently by molecular dynamic (MD) simulations. The theoretical predictions for thermal conductivity take into account the effect of phonon confinement and boundary scattering. Two known theoretical approaches were used. The first approach is based on the solution of the Boltzmann equation with given boundary conditions and uses bulk acoustic phonon dispersion and neglects the phonon confinement effect. The second approach includes also the modification of acoustic phonon dispersion due to spatial confinement. In simulations, the square and circular shapes of wire with the transverse size of nanowires from 4.3 nm to 42.9 nm have been considered. It was found that MD simulation results match the theoretical predictions reasonably well. The obtained results showed that the phonon confinement effect influences the thermal conductivity of nanowires, but the dominant factor decreasing the thermal conductivity with the thickness of nanowires is boundary scattering. Moreover, the values of the interface specular parameter indicate that the specular phonon-boundary scattering prevails over diffuse phonon-boundary scattering.

1.
D. G.
Cahill
,
K.
Goodson
, and
A.
Majumdar
,
J. Heat Transfer
124
,
223
(
2002
).
2.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
,
Appl. Phys. Rev.
1
,
011305
(
2014
).
3.
Z.
Wang
,
J. A.
Carter
,
A.
Lagutchev
,
Y. K.
Koh
,
N.-H.
Seong
,
D. G.
Cahill
, and
D. D.
Dlott
,
Science
317
,
787
(
2007
).
4.
H. D.
Pandey
and
D. M.
Leitner
,
J. Phys. Chem. Lett.
7
,
5062
(
2016
).
5.
H. D.
Pandey
and
D. M.
Leitner
,
J. Chem. Phys.
147
,
084701
(
2017
).
6.
M.
Dinpajooh
and
A.
Nitzan
,
J. Chem. Phys.
153
,
164903
(
2020
).
7.
M. D.
Losego
,
M. E.
Grady
,
N. R.
Sottos
,
D. G.
Cahill
, and
P. V.
Braun
,
Nat. Mater.
11
,
502
(
2012
).
8.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
(
2003
).
9.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
,
Phys. Rev. Lett.
101
,
105501
(
2008
).
10.
A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
).
11.
S. G.
Walkauskas
,
D. A.
Broido
,
K.
Kempa
, and
T. L.
Reinecke
,
J. Appl. Phys.
85
,
2579
(
1999
).
12.
J.
Zou
and
A.
Balandin
,
J. Appl. Phys.
89
,
2932
(
2001
).
13.
D. L.
Nika
,
A. I.
Cocemasov
,
D. V.
Crismari
, and
A. A.
Balandin
,
Appl. Phys. Lett.
102
,
213109
(
2013
).
14.
S. G.
Volz
and
G.
Chen
,
Appl. Phys. Lett.
75
,
2056
(
1999
).
15.
P. G.
Klemens
,
Proc. R. Soc. London, Ser. A
208
,
108
(
1951
).
16.
P. G.
Klemens
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
(
Academic Press
,
New York
,
1958
).
17.
18.
K. V.
Tretiakov
and
S.
Scandolo
,
J. Chem. Phys.
120
,
3765
(
2004
).
19.
K. V.
Tretiakov
and
S.
Scandolo
,
J. Chem. Phys.
121
,
11177
(
2004
).
20.
M.
Omini
and
A.
Sparavigna
,
Phys. Rev. B
53
,
9064
(
1996
).
21.
I. N.
Krupskii
and
V. G.
Manzhelii
,
Sov. Phys. JETP
28
,
1097
(
1969
).
22.
D. K.
Christen
and
G. L.
Pollack
,
Phys. Rev. B
12
,
3380
(
1975
).
23.
V. A.
Konstantinov
,
V. G.
Manzhelii
,
M. A.
Strzhemechnyi
, and
S. A.
Smirnov
,
Sov. J. Low Temp. Phys.
14
,
48
(
1988
). [Fiz. Nizk. Temp. 14, 90 (1988) (in Russian)]
24.
F.
Kargar
,
B.
Debnath
,
J.-P.
Kakko
,
A.
Saynatjoki
,
H.
Lipsanen
,
D. L.
Nika
,
R. K.
Lake
, and
A. A.
Balandin
,
Nat. Commun.
7
,
13400
(
2016
).
25.
A. J. H.
McGaughey
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
47
,
1783
(
2004
).
26.
J. E.
Turney
,
E. S.
Landry
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
79
,
064301
(
2009
).
27.
S.
Ju
and
X.
Liang
,
J. Appl. Phys.
108
,
104307
(
2010
).
28.
J. R.
Lukes
,
D. Y.
Li
,
X.-G.
Liang
, and
C.-L.
Tien
,
J. Heat Transfer
122
,
536
(
2000
).
29.
X.
Feng
,
Z.
Li
,
X.
Liang
, and
Z.
Guo
,
Chin. Sci. Bull.
46
,
604
(
2001
).
30.
Q.-X.
Liu
,
P.-X.
Jiang
, and
H.
Xiang
,
Mol. Simul.
32
,
645
(
2006
).
31.
S.
Ju
and
X.
Liang
,
Chin. Sci. Bull.
57
,
294
(
2012
).
32.
G.
Xiao-Kun
and
C.
Bing-Yang
,
Chin. Phys.
16
,
3777
(
2007
).
33.
P.
Chantrenne
and
J.-L.
Barrat
,
J. Heat Transfer
126
,
577
(
2004
).
35.
C.
Kittle
,
Introduction to Solid State Physics
(
John Wiley & Sons, Inc.
,
1996
).
36.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
J. W. Arrowsmith, Ltd.
,
Bristol, UK
,
1987
).
37.
D. M.
Heyes
,
D.
Dini
,
E. R.
Smith
, and
A. C.
Brańka
,
Phys. Status Solidi B
254
,
1600861
(
2017
).
38.
K.
Hyżorek
and
K. V.
Tretiakov
,
J. Chem. Phys.
144
,
194507
(
2016
).
39.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
New York
,
2005
).
40.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
41.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1965
).
42.
F.
Müller-Plathe
,
J. Chem. Phys.
106
,
14
(
1997
).
43.
J. G.
Kirkwood
,
J. Chem. Phys.
14
,
180
(
1946
).
44.
D. M.
Heyes
,
Phys. Rev. B
37
,
5677
(
1988
).
45.
A. E.
Giannakopoulos
,
F.
Sofos
,
T. E.
Karakasidis
, and
A.
Liakopoulos
,
Int. J. Heat Mass Transfer
55
,
5087
(
2012
).
46.
K.
Hyżorek
and
K. V.
Tretiakov
,
Comput. Methods Sci. Technol.
22
,
197
(
2016
).
47.
D.
Bedrov
and
G. D.
Smith
,
J. Chem. Phys.
113
,
8080
(
2000
).
48.
M.
Zhang
,
E.
Lussetti
,
L. E. S.
de Souza
, and
F.
Müller-Plathe
,
J. Phys. Chem. B
109
,
15060
(
2005
).
49.

The energies are given for the standard runs in which 2 × 105 MD steps were performed to measure the temperature profile. The time between events of particles’ velocity exchange was equal to 100Δt.

50.
K. V.
Tretiakov
and
K. W.
Wojciechowski
,
Comput. Phys. Commun.
189
,
77
(
2015
).
51.
L.
Miao
,
V.
Bhethanabotla
, and
B.
Joseph
,
Phys. Rev. B
72
,
134109
(
2005
).
52.
G. J.
Keeler
and
D. N.
Batchelder
,
J. Phys. C: Solid State Phys.
3
,
510
(
1970
).
53.
A. M.
Krivtsov
and
V. A.
Kuz’kin
,
Mech. Solids
46
,
387
(
2011
).
54.
R.
Vogelsang
,
C.
Hoheisel
, and
G.
Ciccotti
,
J. Chem. Phys.
86
,
6371
(
1987
).
55.
D. P.
Sellan
,
E. S.
Landry
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
81
,
214305
(
2010
).
56.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
57.
I.
Iriarte-Carretero
,
M. A.
Gonzalez
, and
F.
Bresme
,
Phys. Chem. Chem. Phys.
20
,
11028
(
2018
).
58.
C.
Bera
,
J. Appl. Phys.
112
,
074323
(
2012
).
You do not currently have access to this content.