Using computer simulations, we establish that the structure of a supercooled binary atomic liquid mixture consists of common neighbor structures similar to those found in the equilibrium crystal phase, a Laves structure. Despite the large accumulation of the crystal-like structure, we establish that the supercooled liquid represents a true metastable liquid and that liquid can “borrow” the crystal structure without being destabilized. We consider whether this feature might be the origin of all instances of liquids with a strongly favored local structure.
REFERENCES
1.
W. H.
Zachariasen
, “The atomic arrangement in glass
,” J. Am. Chem. Soc.
54
, 3841
(1932
).2.
A. C.
Wright
and M. F.
Thorpe
, “Eighty years of random networks
,” Phys. Status Solidi B
250
, 931
(2013
).3.
K.
Vollmayer
, W.
Kob
, and K.
Binder
, “Cooling-rate effects in amorphous silica: A computer-simulation study
,” Phys. Rev. B
54
, 15808
(1996
).4.
J. R.
Errington
and P. G.
Debenedetti
, “Relationship between structural order and the anomalies of liquid water
,” Nature
409
, 318
(2001
).5.
H.
Tanaka
, “Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,” Eur. Phys. J. E
35
, 113
(2012
).6.
Y. Q.
Cheng
and E.
Ma
, “Atomic-level structure and structure-property relationship in metallic glasses
,” Prog. Mater. Sci.
56
, 379
–473
(2011
).7.
C. P.
Royall
and S. R.
Williams
, “The role of local structure in dynamical arrest
,” Phys. Rep.
560
, 1
–75
(2015
).8.
F. C.
Frank
, “Supercooling of liquids
,” Proc. R. Soc. London, Ser. A
215
, 43
(1952
).9.
D.
Wei
, J.
Yang
, M.-Q.
Jiang
, L.-H.
Dai
, Y.-J.
Wang
, J. C.
Dyre
, I.
Douglass
, and P.
Harrowell
, “Assessing the utility of structure in amorphous materials
,” J. Chem. Phys.
150
, 114502
(2019
).10.
D.
Coslovich
and G.
Pastore
, “Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures
,” J. Chem. Phys.
127
, 124504
(2007
).11.
G.
Wahnström
, “Molecular-dynamics study of a supercooled 2-component Lennard-Jones system
,” Phys. Rev. A
44
, 3752
(1991
).12.
U. R.
Pedersen
, T. B.
Schroder
, J. C.
Dyre
, and P.
Harrowell
, “Geometry of slow structural fluctuations in a supercooled binary alloy
,” Phys. Rev. Lett.
104
, 105701
(2010
).13.
D. L.
Thoma
, “Intermetallics: Laves phases
,” in Encyclopedia of Materials Science and Technology
(Elsevier
, 2001
), pp. 4205
–4213
.14.
E. B.
Moore
and V.
Molinero
, “Structural transformation in supercooled water controls the crystallization rate of ice
,” Nature
479
, 506
(2011
).15.
J. C.
Palmer
, F.
Martelli
, Y.
Liu
, R.
Car
, A. Z.
Panagiotopoulos
, and P. G.
Debenedetti
, “Metastable liquid-liquid transition in a molecular model of water
,” Nature
510
, 385
–388
(2014
).16.
M.
Fitzner
, G. C.
Sosso
, S. J.
Cox
, and A.
Michaelides
, “Ice is born in low-mobility regions of supercooled liquid water
,” Proc. Natl. Acad. Sci. U. S. A.
116
, 2009
(2019
).17.
N.
Bailey
et al., “RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles
,” SciPost Phys.
3
, 038
(2017
).18.
W. G.
Hoover
, “Canonical dynamics: Equilibrium phase-space distributions
,” Phys. Rev. A
31
, 1695
–1697
(1985
).19.
D.
Frenkel
and B.
Smit
, Understanding Molecular Simulation: From Algorithms to Applications
(Academic Press
, 2001
).20.
D. S.
Gaunt
and M. F.
Sykes
, “Series study of random percolation in three dimensions
,” J. Phys. A: Math. Gen.
16
, 783
(1983
).21.
P. N.
Suding
and R. M.
Ziff
, “Site percolation threshold for Archimedean lattices
,” Phys. Rev. E
60
, 275
–283
(1999
).22.
P. M.
Derlet
and R.
Maaß
, “Emergent structural length scales in a model binary glass-The micro-second molecular dynamics regime
,” J. Alloys Compd.
821
, 153209
(2020
).23.
W.
Kob
and H. C.
Andersen
, “Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I—The van Hove correlation function
,” Phys. Rev. B
51
, 4626
–4641
(1995
).24.
P.
Crowther
, F.
Turci
, and C. P.
Royall
, “The nature of geometric frustration in the Kob-Andersen mixture
,” J. Chem. Phys.
143
, 044503
(2015
).25.
S.
Gosh
, J.
Basu
, D.
Ramachandran
, E.
Mohandas
, and M.
Vijayalakshmi
, “A unified approach to phase and microstructural stability for Fe-ETM alloys through Miedema’s model
,” Intermetallics
23
, 148
–157
(2012
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.