Using computer simulations, we establish that the structure of a supercooled binary atomic liquid mixture consists of common neighbor structures similar to those found in the equilibrium crystal phase, a Laves structure. Despite the large accumulation of the crystal-like structure, we establish that the supercooled liquid represents a true metastable liquid and that liquid can “borrow” the crystal structure without being destabilized. We consider whether this feature might be the origin of all instances of liquids with a strongly favored local structure.

1.
W. H.
Zachariasen
, “
The atomic arrangement in glass
,”
J. Am. Chem. Soc.
54
,
3841
(
1932
).
2.
A. C.
Wright
and
M. F.
Thorpe
, “
Eighty years of random networks
,”
Phys. Status Solidi B
250
,
931
(
2013
).
3.
K.
Vollmayer
,
W.
Kob
, and
K.
Binder
, “
Cooling-rate effects in amorphous silica: A computer-simulation study
,”
Phys. Rev. B
54
,
15808
(
1996
).
4.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
(
2001
).
5.
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,”
Eur. Phys. J. E
35
,
113
(
2012
).
6.
Y. Q.
Cheng
and
E.
Ma
, “
Atomic-level structure and structure-property relationship in metallic glasses
,”
Prog. Mater. Sci.
56
,
379
473
(
2011
).
7.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
75
(
2015
).
8.
F. C.
Frank
, “
Supercooling of liquids
,”
Proc. R. Soc. London, Ser. A
215
,
43
(
1952
).
9.
D.
Wei
,
J.
Yang
,
M.-Q.
Jiang
,
L.-H.
Dai
,
Y.-J.
Wang
,
J. C.
Dyre
,
I.
Douglass
, and
P.
Harrowell
, “
Assessing the utility of structure in amorphous materials
,”
J. Chem. Phys.
150
,
114502
(
2019
).
10.
D.
Coslovich
and
G.
Pastore
, “
Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures
,”
J. Chem. Phys.
127
,
124504
(
2007
).
11.
G.
Wahnström
, “
Molecular-dynamics study of a supercooled 2-component Lennard-Jones system
,”
Phys. Rev. A
44
,
3752
(
1991
).
12.
U. R.
Pedersen
,
T. B.
Schroder
,
J. C.
Dyre
, and
P.
Harrowell
, “
Geometry of slow structural fluctuations in a supercooled binary alloy
,”
Phys. Rev. Lett.
104
,
105701
(
2010
).
13.
D. L.
Thoma
, “
Intermetallics: Laves phases
,” in
Encyclopedia of Materials Science and Technology
(
Elsevier
,
2001
), pp.
4205
4213
.
14.
E. B.
Moore
and
V.
Molinero
, “
Structural transformation in supercooled water controls the crystallization rate of ice
,”
Nature
479
,
506
(
2011
).
15.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Metastable liquid-liquid transition in a molecular model of water
,”
Nature
510
,
385
388
(
2014
).
16.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
, “
Ice is born in low-mobility regions of supercooled liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
2009
(
2019
).
17.
N.
Bailey
 et al., “
RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles
,”
SciPost Phys.
3
,
038
(
2017
).
18.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
19.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
).
20.
D. S.
Gaunt
and
M. F.
Sykes
, “
Series study of random percolation in three dimensions
,”
J. Phys. A: Math. Gen.
16
,
783
(
1983
).
21.
P. N.
Suding
and
R. M.
Ziff
, “
Site percolation threshold for Archimedean lattices
,”
Phys. Rev. E
60
,
275
283
(
1999
).
22.
P. M.
Derlet
and
R.
Maaß
, “
Emergent structural length scales in a model binary glass-The micro-second molecular dynamics regime
,”
J. Alloys Compd.
821
,
153209
(
2020
).
23.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I—The van Hove correlation function
,”
Phys. Rev. B
51
,
4626
4641
(
1995
).
24.
P.
Crowther
,
F.
Turci
, and
C. P.
Royall
, “
The nature of geometric frustration in the Kob-Andersen mixture
,”
J. Chem. Phys.
143
,
044503
(
2015
).
25.
S.
Gosh
,
J.
Basu
,
D.
Ramachandran
,
E.
Mohandas
, and
M.
Vijayalakshmi
, “
A unified approach to phase and microstructural stability for Fe-ETM alloys through Miedema’s model
,”
Intermetallics
23
,
148
157
(
2012
).

Supplementary Material

You do not currently have access to this content.