Phosphorus is of particular interest in astrochemistry because it is a biogenic element together with hydrogen, carbon, nitrogen, oxygen, and sulfur. However, the chemical evolution of such element in the interstellar medium (ISM) is still far from an accurate characterization, with the chemistry of P-bearing molecules being poorly understood. To provide a contribution in this direction, we have carried out an accurate investigation of the potential energy surface for the reaction between the CP radical and methanimine (CH2NH), two species already detected in the ISM. In analogy to similar systems, i.e., CH2NH + X, with X = OH, CN, and CCH, this reaction can occur—from an energetic point of view—under the harsh conditions of the ISM. Furthermore, since the major products of the aforementioned reaction, namely, E- and Z-2-phosphanylidyneethan-1-imine (HN=CHCP) and N-(phosphaneylidynemethyl)methanimine (H2C=NCP), have not been spectroscopically characterized yet, some effort has been made for filling this gap by means of accurate computational approaches.

1.
E.
Maciá
, “
The role of phosphorus in chemical evolution
,”
Chem. Soc. Rev.
34
,
691
701
(
2005
).
2.
N.
Grevesse
and
A. J.
Sauval
, “
Standard solar composition
,”
Space Sci. Rev.
85
,
161
174
(
1998
).
3.
S.
Yamamoto
,
Introduction to Astrochemistry: Chemical Evolution From Interstellar Clouds to Star and Planet Formation
(
Springer
,
Japan
,
2017
).
4.
V.
Lebouteiller
,
Kuassivi
, and
R.
Ferlet
, “
Phosphorus in the diffuse interstellar medium
,”
Astron. Astrophys.
443
,
509
517
(
2005
).
5.
J.
Chantzos
,
V. M.
Rivilla
,
A.
Vasyunin
,
E.
Redaelli
,
L.
Bizzocchi
,
F.
Fontani
, and
P.
Caselli
, “
The first steps of interstellar phosphorus chemistry
,”
Astron. Astrophys.
633
,
A54
(
2020
).
6.
S. N.
Milam
,
D. T.
Halfen
,
E. D.
Tenenbaum
,
A. J.
Apponi
,
N. J.
Woolf
, and
L. M.
Ziurys
, “
Constraining phosphorus chemistry in carbon- and oxygen-rich circumstellar envelopes: Observations of PN, HCP, and CP
,”
Astrophys. J.
684
,
618
625
(
2008
).
7.
L. M.
Ziurys
, “
Detection of interstellar PN: The first phosphorus-bearing species observed in molecular clouds
,”
Astrophys. J.
321
,
L81
L85
(
1987
).
8.
B. E.
Turner
and
J.
Bally
, “
Detection of interstellar PN: The first identified phosphorus compound in the interstellar medium
,”
Astrophys. J.
321
,
L75
L79
(
1987
).
9.
M.
Guélin
,
J.
Cernicharo
,
G.
Paubert
, and
B. E.
Turner
, “
Free CP in IRC+10216
,”
Astron. Astrophys.
230
,
L9
L11
(
1990
).
10.
M.
Agúndez
,
J.
Cernicharo
, and
M.
Guélin
, “
Discovery of phosphaethyne (HCP) in space: Phosphorus chemistry in circumstellar envelopes
,”
Astrophys. J.
662
,
L91
L94
(
2007
).
11.
M.
Agúndez
,
J.
Cernicharo
,
L.
Decin
,
P.
Encrenaz
, and
D.
Teyssier
, “
Confirmation of circumstellar phosphine
,”
Astrophys. J.
790
,
L27
(
2014
).
12.
D. T.
Halfen
,
D. J.
Clouthier
, and
L. M.
Ziurys
, “
Detection of the CCP radical (X2Πr) in IRC+10216: A new interstellar phosphorus-containing species
,”
Astrophys. J.
677
,
L101
L104
(
2008
).
13.
E. D.
Tenenbaum
,
N. J.
Woolf
, and
L. M.
Ziurys
, “
Identification of phosphorus monoxide (X2Πr) in VY Canis Majoris: Detection of the first P–O bond in space
,”
Astrophys. J.
666
,
L29
L32
(
2007
).
14.
D. T.
Halfen
,
D. J.
Clouthier
, and
L. M.
Ziurys
, “
Millimeter/submillimeter spectroscopy of PH2CN (X̃1A) and CH3PH2 (X̃1A): Probing the complexity of interstellar phosphorus in chemistry
,”
Astrophys. J.
796
,
36
(
2014
).
15.
E. D.
Tenenbaum
,
J. L.
Dodd
,
S. N.
Milam
,
N. J.
Woolf
, and
L. M.
Ziurys
, “
Comparatice spectra of oxygen-rich vs carbon-rich circumstellar shells: VY Canis Majoris and IRC+10216 at 215-285 GHz
,”
Astrophys. J.
720
,
L102
L107
(
2010
).
16.
V. A.
Basiuk
and
V. I.
Bogillo
, “
Theoretical study of amino acid precursor formation in the interstellar medium. 2. Reaction of methylenimine with CN radical
,”
Adv. Space Res.
30
,
1445
1450
(
2002
).
17.
F.
Vazart
,
C.
Latouche
,
D.
Skouteris
,
N.
Balucani
, and
V.
Barone
, “
Cyanomethanimine isomers in cold insterstellar clouds: Insights from electronic structure and kinetic calculations
,”
Astrophys. J.
810
,
111
(
2015
).
18.
J.
Lupi
,
C.
Puzzarini
, and
V.
Barone
, “
Methanimine as a key precursor of imines in the interstellar medium: The case of propargylimine
,”
Astrophys. J. Lett.
903
,
L35
(
2020
).
19.
L.
Bizzocchi
,
D.
Prudenzano
,
V. M.
Rivilla
,
A.
Pietropolli-Charmet
,
B. M.
Giuliano
,
P.
Caselli
,
J.
Martín-Pintado
,
I.
Jiménez-Serra
,
S.
Martín
,
M. A.
Requena-Torres
,
F.
Rico-Villas
,
S.
Zeng
, and
J.-C.
Guillemin
, “
Propargylimine in the laboratory and in space: Millimetre-wave spectroscopy and its first detection in the ISM
,”
Astron. Astrophys.
640
,
A98
(
2020
).
20.
F.
Vazart
,
D.
Calderini
,
C.
Puzzarini
,
D.
Skouteris
, and
V.
Barone
, “
State-of-the-art thermochemical and kinetic computations for astrochemical complex organic molecules: Formamide formation in cold interstellar clouds as a case study
,”
J. Chem. Theory Comput.
12
,
5385
5397
(
2016
).
21.
M.
Melosso
,
L.
Dore
,
F.
Tamassia
,
C. L.
Brogan
,
T. R.
Hunter
, and
B. A.
McGuire
., “
The submillimeter rotational spectrum of ethylene glycol up to 890 GHz and application to ALMA band 10 spectral line data of NGC 6334I
,”
J. Phys. Chem. A
124
,
240
246
(
2020
).
22.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Phys. Chem.
124
,
034108
(
2006
).
23.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
24.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
25.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
26.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
,”
J. Chem. Phys.
114
,
9244
9253
(
2001
).
27.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
28.
E.
Papajak
and
D. G.
Truhlar
, “
Convergent partially augmented basis sets for post-Hartree-Fock calculations of molecular properties and reaction barrier heights
,”
J. Chem. Theory Comput.
7
,
10
18
(
2011
).
29.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
A new basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
30.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
31.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
1586
(
1996
).
32.
K.
Fukui
, “
The path of chemical reactions—The IRC approach
,”
Acc. Chem. Res.
14
,
363
368
(
1981
).
33.
S.
Alessandrini
,
V.
Barone
, and
C.
Puzzarini
, “
Extension of the “Cheap” composite approach to noncovalent interactions: The jun-ChS scheme
,”
J. Chem. Theory Comput.
16
,
988
1006
(
2019
).
34.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
35.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
36.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
(
1997
).
37.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
, “
Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al-Ar, and the first row atoms B-Ne revisited
,”
J. Chem. Phys.
117
,
10548
10560
(
2002
).
38.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
, “
Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions
,”
Chem. Phys. Lett.
182
,
207
215
(
1991
).
39.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
, “
Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients
,”
J. Chem. Phys.
98
,
8718
8733
(
1993
).
40.
W. J.
Lauderdale
,
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
, “
Many-body perturbation theory with a restricted open-shell Hartree–Fock reference
,”
Chem. Phys. Lett.
187
,
21
28
(
1991
).
41.
W. J.
Lauderdale
,
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
, “
Restricted open-shell Hartree–Fock-based many-body perturbation theory: Theory and application of energy and gradient calculations
,”
J. Chem. Phys.
97
,
6606
6620
(
1992
).
42.
C.
Puzzarini
and
V.
Barone
, “
The challenging playground of astrochemistry: An integrated rotational spectroscopy—Quantum chemistry strategy
,”
Phys. Chem. Chem. Phys.
22
,
6507
6523
(
2020
).
43.
A. S.
Menon
and
L.
Radom
, “
Consequences of spin contamination in unrestricted calculations on open-shell species: Effect of Hartree–Fock and Møller–Plesset contributions in hybrid and double-hybrid density functional theory approaches
,”
J. Phys. Chem. A
112
,
13225
13230
(
2008
).
44.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
, “
HEAT: High accuracy extrapolated ab initio thermochemistry
,”
J. Comput. Phys.
121
,
11599
11613
(
2004
).
45.
Y. J.
Bomble
,
J.
Vázquez
,
M.
Kállay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Császár
,
J.
Gauss
, and
J. F.
Stanton
, “
High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification
,”
J. Chem. Phys.
125
,
064108
(
2006
).
46.
M. E.
Harding
,
J.
Vázquez
,
B.
Ruscic
,
A. K.
Wilson
,
J.
Gauss
, and
J. F.
Stanton
, “
High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview
,”
J. Chem. Phys.
128
,
114111
(
2008
).
47.
C.
Puzzarini
,
Z.
Salta
,
N.
Tasinato
,
J.
Lupi
,
C.
Cavallotti
, and
V.
Barone
, “
A twist on the reaction of the CN radical with methylamine in the interstellar medium: New hints from a state-of-the-art quantum-chemical study
,”
Mon. Not. R. Astron. Soc.
496
,
4298
4310
(
2020
).
48.
J.
Lupi
,
C.
Puzzarini
,
C.
Cavallotti
, and
V.
Barone
, “
State-of-the-art quantum chemistry meets variable reaction coordinate transition state theory to solve the puzzling case of the H2S + Cl system
,”
J. Chem. Theory Comput.
16
,
5090
5104
(
2020
).
49.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
50.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
7050
(
1987
).
51.
G. E.
Scuseria
and
H. F.
Schaefer
 III
, “
A new implementation of the full CCSDT model for molecular electronic structure
,”
Chem. Phys. Lett.
152
,
382
386
(
1988
).
52.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
,
054101
(
2005
).
53.
M.
Kállay
and
J.
Gauss
, “
Approximate treatment of higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
123
,
214105
(
2005
).
54.
M.
Kállay
and
J.
Gauss
, “
Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree–Fock case
,”
J. Chem. Phys.
129
,
144101
(
2008
).
55.
R. D.
Cowan
and
D. C.
Griffin
, “
Approximate relativistic corrections to atomic radial wave functions
,”
J. Opt. Soc. Am.
66
,
1010
1014
(
1976
).
56.
W.
Klopper
, “
Simple recipe for implementing computation of first-order relativistic corrections to electron correlation energies in framework of direct perturbation theory
,”
J. Comput. Chem.
18
,
20
27
(
1997
).
57.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
, “
The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects
,”
J. Chem. Phys.
84
,
4481
4484
(
1986
).
58.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
59.
C.
Puzzarini
,
J. F.
Stanton
, and
J.
Gauss
, “
Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy
,”
Int. Rev. Phys. Chem.
29
,
273
367
(
2010
).
60.
M.
Heckert
,
M.
Kállay
, and
J.
Gauss
, “
Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations
,”
Mol. Phys.
103
,
2109
2115
(
2005
).
61.
M.
Heckert
,
M.
Kállay
,
D. P.
Tew
,
W.
Klopper
, and
J.
Gauss
, “
Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory
,”
J. Chem. Phys.
125
,
044108
(
2006
).
62.
D.
Feller
, “
The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water
,”
J. Phys. Chem.
98
,
7059
7071
(
1993
).
63.
S.
Alessandrini
,
J.
Gauss
, and
C.
Puzzarini
, “
Accuracy of rotational parameters predicted by high-level quantum-chemical calculations: Case study of sulfur-containing molecules of astrochemical interest
,”
J. Chem. Theory Comput.
14
,
5360
5371
(
2018
).
64.
C.
Puzzarini
,
M.
Heckert
, and
J.
Gauss
, “
The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. Molecules containing first-row atoms
,”
J. Chem. Phys.
128
,
194108
(
2008
).
65.
I. M.
Mills
, “
Vibration-rotation structure in asymmetric-and symmetric-top molecules
,”
Mol. Spectrosc.
1
,
115
(
1972
).
66.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
,
014108
(
2005
).
67.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian16 Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
68.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package,” with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
O.
Christiansen
,
F.
Engel
,
R.
Faber
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
, and
J. D.
Watts
,and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version see http://www.cfour.de.
69.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
70.
B. A.
McGuire
, “
2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules
,”
Astrophys. J., Suppl. Ser.
239
,
17
(
2018
).
71.
A. H.
Saleck
,
R.
Simon
,
N.
Schneider
, and
G.
Winnewisser
, “
Detection of interstellar 12C15N
,”
Astrophys. J. Lett.
414
,
L133
(
1993
).
72.
J.
Cernicharo
,
M.
Guélin
,
M.
Agúndez
,
M. C.
McCarthy
, and
P.
Thaddeus
, “
Detection of C5N and vibrationally excited C6H in IRC+10216
,”
Astrophys. J. Lett.
688
,
L83
(
2008
).
73.
N.
Marcelino
,
M.
Agúndez
,
B.
Tercero
,
C.
Cabezas
,
C.
Bermúdez
,
J. D.
Gallego
,
P.
deVicente
, and
J.
Cernicharo
, “
Tentative detection of HC5NH+ in TMC-1
,”
Astron. Astrophys.
643
,
L6
(
2020
).
74.
M.
Melosso
,
A.
Melli
,
C.
Puzzarini
,
C.
Codella
,
L.
Spada
,
L.
Dore
,
C.
Degli Esposti
,
B.
Lefloch
,
R.
Bachiller
,
C.
Ceccarelli
,
J.
Cernicharo
, and
V.
Barone
, “
Laboratory measurements and astronomical search for cyanomethanimine
,”
Astron. Astrophys.
609
,
A121
(
2018
).
75.
C.
Puzzarini
,
G.
Cazzoli
, and
J.
Gauss
, “
The rotational spectra of HD17O and D217O: Experiment and quantum-chemical calculations
J. Chem. Phys.
137
,
154311
(
2012
).
76.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
You do not currently have access to this content.