We study a simple model for photoinduced electron transfer reactions for the case of many donor–acceptor pairs that are collectively and homogeneously coupled to a photon mode of a cavity. We describe both coherent and dissipative collective effects resulting from this coupling within the framework of a quantum optics Lindblad master equation. We introduce a method to derive an effective rate equation for electron transfer by adiabatically eliminating donor and acceptor states and the cavity mode. The resulting rate equation is valid for both weak and strong coupling to the cavity mode and describes electronic transfer through both the cavity-coupled bright states and the uncoupled dark states. We derive an analytic expression for the instantaneous electron transfer rate that depends non-trivially on the time-varying number of pairs in the ground state. We find that under proper resonance conditions, and in the presence of an incoherent drive, reaction rates can be enhanced by the cavity. This enhancement persists, and can even be largest, in the weak light–matter coupling regime. We discuss how the cavity effect is relevant for realistic experiments.

1.
T. W.
Ebbesen
, “
Hybrid light–matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
2.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
,
100902
(
2020
).
3.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
55
,
11462
(
2016
).
4.
A. D.
Dunkelberger
,
B. T.
Spann
,
K. P.
Fears
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
,”
Nat. Commun.
7
,
1
10
(
2016
).
5.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
6.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
, “
Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules
,”
Angew. Chem., Int. Ed.
58
,
10635
10638
(
2019
).
7.
H.
Hiura
,
A.
Shalabney
, and
J.
George
, “
Vacuum-field catalysis: Accelerated reactions by vibrational ultra strong coupling
,”
figshare
(
2019
).
8.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
9.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
,”
Sci. Adv.
4
,
eaas9552
(
2018
).
10.
V. N.
Peters
,
M. O.
Faruk
,
J.
Asane
,
R.
Alexander
,
D. A.
Peters
,
S.
Prayakarao
,
S.
Rout
, and
M. A.
Noginov
, “
Effect of strong coupling on photodegradation of the semiconducting polymer P3HT
,”
Optica
6
,
318
325
(
2019
).
11.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
12.
M.
Kowalewski
,
K.
Bennett
, and
S.
Mukamel
, “
Cavity femtochemistry: Manipulating nonadiabatic dynamics at avoided crossings
,”
J. Phys. Chem. Lett.
7
,
2050
2054
(
2016
).
13.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
3034
(
2017
).
14.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
, “
Polaritonic chemistry with organic molecules
,”
ACS Photonics
5
,
205
216
(
2018
).
15.
J.
Flick
and
P.
Narang
, “
Cavity-correlated electron-nuclear dynamics from first principles
,”
Phys. Rev. Lett.
121
,
113002
(
2018
).
16.
O.
Vendrell
, “
Collective Jahn-Teller interactions through light-matter coupling in a cavity
,”
Phys. Rev. Lett.
121
,
253001
(
2018
).
17.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
1
8
(
2019
).
18.
J.
Fregoni
,
G.
Granucci
,
M.
Persico
, and
S.
Corni
, “
Strong coupling with light enhances the photoisomerization quantum yield of azobenzene
,”
Chem
6
,
250
265
(
2020
).
19.
F.
Herrera
, “
Photochemistry with quantum optics from a non-adiabatic quantum trajectory perspective
,”
Chem
6
,
7
9
(
2020
).
20.
I. S.
Ulusoy
and
O.
Vendrell
, “
Dynamics and spectroscopy of molecular ensembles in a lossy microcavity
,”
J. Chem. Phys.
153
,
044108
(
2020
).
21.
S.
Felicetti
,
J.
Fregoni
,
T.
Schnappinger
,
S.
Reiter
,
R.
de Vivie-Riedle
, and
J.
Feist
, “
Photoprotecting uracil by coupling with lossy nanocavities
,”
J. Phys. Chem. Lett.
11
,
8810
8818
(
2020
).
22.
D. S.
Wang
,
T.
Neuman
,
J.
Flick
, and
P.
Narang
, “
Weak-to-strong light-matter coupling and dissipative dynamics from first principles
,” arXiv:2002.10461 (
2020
).
23.
P.
Antoniou
,
F.
Suchanek
,
J. F.
Varner
, and
J. J.
Foley
 IV
, “
Role of cavity losses on nonadiabatic couplings and dynamics in polaritonic chemistry
,”
J. Phys. Chem. Lett.
11
,
9063
6069
(
2020
).
24.
E.
Davidsson
and
M.
Kowalewski
, “
Simulating photodissociation reactions in bad cavities with the Lindblad equation
,”
J. Chem. Phys.
153
,
234304
(
2020
).
25.
J.
Torres-Sánchez
and
J.
Feist
, “
Molecular photodissociation enabled by ultrafast plasmon decay
,”
J. Chem. Phys.
154
,
014303
(
2021
).
26.
F.
Herrera
and
F. C.
Spano
, “
Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states
,”
ACS Photonics
5
,
65
79
(
2017
).
27.
J. d.
Pino
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode
,”
New J. Phys.
17
,
053040
(
2015
).
28.
L. A.
Martínez-Martínez
,
M.
Du
,
R. F.
Ribeiro
,
S.
Kéna-Cohen
, and
J.
Yuen-Zhou
, “
Polariton-assisted singlet fission in acene aggregates
,”
J. Phys. Chem. Lett.
9
,
1951
1957
(
2018
).
29.
M.
Reitz
,
C.
Sommer
, and
C.
Genes
, “
Langevin approach to quantum optics with molecules
,”
Phys. Rev. Lett.
122
,
203602
(
2019
).
30.
D.
Finkelstein-Shapiro
,
D.
Viennot
,
I.
Saideh
,
T.
Hansen
,
T.
Pullerits
, and
A.
Keller
, “
Adiabatic elimination and subspace evolution of open quantum systems
,”
Phys. Rev. A
101
,
042102
(
2020
).
31.
F.
Reiter
and
A. S.
Sørensen
, “
Effective operator formalism for open quantum systems
,”
Phys. Rev. A
85
,
032111
(
2012
).
32.
D.
Wellnitz
,
S.
Schütz
,
S.
Whitlock
,
J.
Schachenmayer
, and
G.
Pupillo
, “
Collective dissipative molecule formation in a cavity
,”
Phys. Rev. Lett.
125
,
193201
(
2020
).
33.
D. S.
Jin
and
J.
Ye
, “
Introduction to ultracold molecules: New frontiers in quantum and chemical physics
,”
Chem. Rev.
112
,
4801
4802
(
2012
).
34.
O.
Dulieu
and
A.
Osterwalder
,
Cold Chemistry
(
The Royal Society of Chemistry
,
2017
).
35.
A.
Mandal
,
T. D.
Krauss
, and
P.
Huo
, “
Polariton-mediated electron transfer via cavity quantum electrodynamics
,”
J. Phys. Chem. B
124
,
6321
6340
(
2020
).
36.
I. S.
Ulusoy
,
J. A.
Gomez
, and
O.
Vendrell
, “
Modifying the nonradiative decay dynamics through conical intersections via collective coupling to a cavity mode
,”
J. Phys. Chem. A
123
,
8832
8844
(
2019
).
37.
T.
Szidarovszky
,
G. J.
Halász
, and
Á.
Vibók
, “
Three-player polaritons: Nonadiabatic fingerprints in an entangled atom–molecule–photon system
,”
New J. Phys.
22
,
053001
(
2020
).
38.
E.
Davidsson
and
M.
Kowalewski
, “
Atom assisted photochemistry in optical cavities
,”
J. Phys. Chem. A
124
,
4672
4677
(
2020
).
39.
C.
Gonzalez-Ballestero
,
J.
Feist
,
E.
Gonzalo Badía
,
E.
Moreno
, and
F. J.
Garcia-Vidal
, “
Uncoupled dark states can inherit polaritonic properties
,”
Phys. Rev. Lett.
117
,
156402
(
2016
).
40.
G.
Groenhof
,
C.
Climent
,
J.
Feist
,
D.
Morozov
, and
J. J.
Toppari
, “
Tracking polariton relaxation with multiscale molecular dynamics simulations
,”
J. Phys. Chem. Lett.
10
,
5476
5483
(
2019
).
41.
C.
Sommer
,
M.
Reitz
,
F.
Mineo
, and
C.
Genes
, “
Molecular polaritonics in dense mesoscopic disordered ensembles
,” arXiv:2010.07155 (
2020
).
42.
T.
Botzung
,
D.
Hagenmüller
,
S.
Schütz
,
J.
Dubail
,
G.
Pupillo
, and
J.
Schachenmayer
, “
Dark state semilocalization of quantum emitters in a cavity
,”
Phys. Rev. B
102
,
144202
(
2020
).
43.
N. C.
Chávez
,
F.
Mattiotti
,
J. A.
Méndez-Bermúdez
,
F.
Borgonovi
, and
G. L.
Celardo
, “
Disorder-enhanced and disorder-independent transport with long-range hopping: Application to molecular chains in optical cavities
,” arXiv:2010.08060 (
2020
).
44.
Precisely, the rotating frame transformation is achieved by applying the unitary operator Û = exp[iωDGtN^e], where the Hamiltonian and the states transform according to Ĥ′ = ÛĤÛ + i(tÛ) Û and ψ=ˆUψ, respectively.
45.
C.
Gardiner
and
P.
Zoller
,
Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods With Applications to Quantum Optics
(
Springer Science & Business Media
,
2004
).
46.
H.
Zhu
,
Y.
Yang
,
K.
Hyeon-Deuk
,
M.
Califano
,
N.
Song
,
Y.
Wang
,
W.
Zhang
,
O. V.
Prezhdo
, and
T.
Lian
, “
Auger-assisted electron transfer from photoexcited semiconductor quantum dots
,”
Nano Lett.
14
,
1263
1269
(
2014
).
47.
S.
Gupta
and
E.
Waks
, “
Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity
,”
Opt. Express
21
,
29612
29619
(
2013
).
48.
B.
Misra
and
E. C. G.
Sudarshan
, “
The Zeno’s paradox in quantum theory
,”
J. Math. Phys.
18
,
756
763
(
1977
).
49.
M. A.
Zeb
,
P. G.
Kirton
, and
J.
Keeling
, “
Exact states and spectra of vibrationally dressed polaritons
,”
ACS Photonics
5
,
249
257
(
2018
).
50.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of non-Markovian dynamics in organic polaritons
,”
Phys. Rev. Lett.
121
,
227401
(
2018
).
51.
C. W.
Gardiner
 et al.,
Handbook of Stochastic Methods
(
Springer Berlin
,
1985
), Vol. 3.
52.
J. J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
, 3rd edition (Cambridge University Press,
2021
).
53.
A. J.
Daley
, “
Quantum trajectories and open many-body quantum systems
,”
Adv. Phys.
63
,
77
149
(
2014
).
54.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
, “
Radiation considered as a reservoir: Master equation for the particles
,” in
Atom–Photon Interactions
(
John Wiley & Sons, Ltd.
,
2008
), Chap. 4, pp.
257
351
.
55.
gcκ/4 is the condition for having two eigenstates with different eigenenergies. However, the difference can be only spectrally resolved at a larger gc. Note also that we neglected other dissipation Γ, ηκ, in this approximate condition.
56.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
,
205
213
(
2010
).
57.
K.
Ikeda
,
K.
Takahashi
,
T.
Masuda
, and
K.
Uosaki
, “
Plasmonic enhancement of photoinduced uphill electron transfer in a molecular monolayer system
,”
Angew. Chem., Int. Ed.
50
,
1280
1284
(
2011
).
58.
X.
Zhang
,
Y. L.
Chen
,
R.-S.
Liu
, and
D. P.
Tsai
, “
Plasmonic photocatalysis
,”
Rep. Prog. Phys.
76
,
046401
(
2013
).
59.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
719
(
2014
).
60.
X.
Zhong
,
T.
Chervy
,
S.
Wang
,
J.
George
,
A.
Thomas
,
J. A.
Hutchison
,
E.
Devaux
,
C.
Genet
, and
T. W.
Ebbesen
, “
Non-radiative energy transfer mediated by hybrid light-matter states
,”
Angew. Chem., Int. Ed.
55
,
6202
6206
(
2016
).
61.
X.
Zhong
,
T.
Chervy
,
L.
Zhang
,
A.
Thomas
,
J.
George
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Energy transfer between spatially separated entangled molecules
,”
Angew. Chem., Int. Ed.
56
,
9034
(
2017
).
62.
K.
Stranius
,
M.
Hertzog
, and
K.
Börjesson
, “
Selective manipulation of electronically excited states through strong light–matter interactions
,”
Nat. Commun.
9
,
1
7
(
2018
).
63.
S.
Takahashi
,
K.
Watanabe
, and
Y.
Matsumoto
, “
Singlet fission of amorphous rubrene modulated by polariton formation
,”
J. Chem. Phys.
151
,
074703
(
2019
).
64.
E.
Eizner
,
L. A.
Martínez-Martínez
,
J.
Yuen-Zhou
, and
S.
Kéna-Cohen
, “
Inverting singlet and triplet excited states using strong light-matter coupling
,”
Sci. Adv.
5
,
eaax4482
(
2019
).
65.
Y.
Yu
,
S.
Mallick
,
M.
Wang
, and
K.
Börjesson
, “
Barrier-free reverse-intersystem crossing by strong light-matter coupling
,”
figshare
(
2020
).
66.
D.
Polak
,
R.
Jayaprakash
,
T. P.
Lyons
,
L. Á.
Martínez-Martínez
,
A.
Leventis
,
K. J.
Fallon
,
H.
Coulthard
,
D. G.
Bossanyi
,
K.
Georgiou
,
A. J.
Petty
 II
,
J.
Anthony
,
H.
Bronstein
,
J.
Yuen-Zhou
,
A. I.
Tartakovskii
,
J.
Clark
, and
A. J.
Musser
, “
Manipulating molecules with strong coupling: Harvesting triplet excitons in organic exciton microcavities
,”
Chem. Sci.
11
,
343
354
(
2020
).
You do not currently have access to this content.