We present a family of alchemical perturbation potentials that enable the calculation of hydration free energies of small- to medium-sized molecules in a single concerted alchemical coupling step instead of the commonly used sequence of two distinct coupling steps for Lennard-Jones and electrostatic interactions. The perturbation potentials we employ are non-linear functions of the solute–solvent interaction energy designed to focus sampling near entropic bottlenecks along the alchemical pathway. We present a general framework to optimize the parameters of alchemical perturbation potentials of this kind. The optimization procedure is based on the λ-function formalism and the maximum-likelihood parameter estimation procedure we developed earlier to avoid the occurrence of multi-modal distributions of the coupling energy along the alchemical path. A novel soft-core function applied to the overall solute–solvent interaction energy rather than individual interatomic pair potentials critical for this result is also presented. Because it does not require modifications of core force and energy routines, the soft-core formulation can be easily deployed in molecular dynamics simulation codes. We illustrate the method by applying it to the estimation of the hydration free energy in water droplets of compounds of varying size and complexity. In each case, we show that convergence of the hydration free energy is achieved rapidly. This work paves the way for the ongoing development of more streamlined algorithms to estimate free energies of molecular binding with explicit solvation.

1.
A.
Ben Naim
,
Water and Aqueous Solutions
(
Plenum
,
New York
,
1974
).
2.
C. A. S.
Bergström
and
P.
Larsson
, “
Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting
,”
Int. J. Pharm.
540
(
1-2
),
185
193
(
2018
).
3.
M. K.
Gilson
,
J. A.
Given
,
B. L.
Bush
, and
J. A.
McCammon
, “
The statistical-thermodynamic basis for computation of binding affinities: A critical review
,”
Biophys. J.
72
,
1047
1069
(
1997
).
4.
D. L.
Mobley
and
J. P.
Guthrie
, “
FreeSolv: A database of experimental and calculated hydration free energies, with input files
,”
J. Comput. Aided Mol. Des.
28
(
7
),
711
720
(
2014
).
5.
Free Energy Calculations. Theory and Applications in Chemistry and Biology
. Springer Series in Chemical Physics, edited by
C.
Chipot
and
A.
Pohorille
(
Springer, Berlin, Heidelberg
,
2007
).
6.
A.
de Ruiter
and
C.
Oostenbrink
, “
Free energy calculations of protein–ligand interactions
,”
Curr. Opin. Chem. Biol.
15
(
4
),
547
552
(
2011
).
7.
T.
Simonson
, “
Free energy of particle insertion: An exact analysis of the origin singularity for simple liquids
,”
Mol. Phys.
80
(
2
),
441
447
(
1993
).
8.
D. L.
Mobley
, “
Lets get honest about sampling
,”
J. Comput. Aided Mol. Des.
26
,
93
95
(
2012
).
9.
P. V.
Klimovich
,
M. R.
Shirts
, and
D. L.
Mobley
, “
Guidelines for the analysis of free energy calculations
,”
J. Comput. Aided Mol. Des.
29
(
5
),
397
411
(
2015
).
10.
T.-S.
Lee
,
B. K.
Allen
,
T. J.
Giese
,
Z.
Guo
,
P.
Li
,
C.
Lin
,
T. D.
McGee
, Jr.
,
D. A.
Pearlman
,
B. K.
Radak
,
Y.
Tao
,
H.-C.
Tsai
,
H.
Xu
,
W.
Sherman
, and
D. M.
York
, “
Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery
,”
J. Chem. Inf. Model.
60
,
5595
5623
(
2020
).
11.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations
,”
J. Chem. Phys.
127
,
214108
(
2007
).
12.
J. W.
Pitera
and
W. F.
van Gunsteren
, “
A comparison of non-bonded scaling approaches for free energy calculations
,”
Mol. Simul.
28
(
1-2
),
45
65
(
2002
).
13.
T.-S.
Lee
,
Z.
Lin
,
B. K.
Allen
,
C.
Lin
,
B. K.
Radak
,
Y.
Tao
,
H.-C.
Tsai
,
W.
Sherman
, and
D. M.
York
, “
Improved alchemical free energy calculations with optimized smoothstep softcore potentials
,”
J. Chem. Theory Comput.
16
,
5512
5525
(
2020
).
14.
Y.
Li
and
K.
Nam
, “
Repulsive soft-core potentials for efficient alchemical free energy calculations
,”
J. Chem. Theory Comput.
16
(
8
),
4776
4789
(
2020
).
15.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
16.
Z.
Cournia
,
B. K.
Allen
,
T.
Beuming
,
D. A.
Pearlman
,
B. K.
Radak
, and
W.
Sherman
, “
Rigorous free energy simulations in virtual screening
,”
J. Chem. Inf. Model.
60
,
4153
4169
(
2020
).
17.
B.
Zhang
,
M. P.
D’Erasmo
,
R. P.
Murelli
, and
E.
Gallicchio
, “
Free energy-based virtual screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase
,”
ACS Omega
1
,
435
447
(
2016
).
18.
R. K.
Pal
,
S.
Gadhiya
,
S.
Ramsey
,
P.
Cordone
,
L.
Wickstrom
,
W. W.
Harding
,
T.
Kurtzman
, and
E.
Gallicchio
, “
Inclusion of enclosed hydration effects in the binding free energy estimation of dopamine D3 receptor complexes
,”
PLoS One
14
(
9
),
e0222902
(
2019
).
19.
D.
Kilburg
and
E.
Gallicchio
, “
Assessment of a single decoupling alchemical approach for the calculation of the absolute binding free energies of protein-peptide complexes
,”
Front. Mol. Biosci.
5
,
22
(
2018
).
20.
R. K.
Pal
and
E.
Gallicchio
, “
Perturbation potentials to overcome order/disorder transitions in alchemical binding free energy calculations
,”
J. Chem. Phys.
151
(
12
),
124116
(
2019
).
21.
Q.
Lu
,
J.
Kim
,
J. D.
Farrell
,
D. J.
Wales
, and
J. E.
Straub
, “
Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method
,”
J. Chem. Phys.
141
(
18
),
18C525
(
2014
).
22.
D.
Kilburg
and
E.
Gallicchio
, “
Analytical model of the free energy of alchemical molecular binding
,”
J. Chem. Theory Comput.
14
(
12
),
6183
6196
(
2018
).
23.
J.
Kim
and
J. E.
Straub
, “
Generalized simulated tempering for exploring strong phase transitions
,”
J. Chem. Phys.
133
(
15
),
154101
(
2010
).
24.
N.
Matubayasi
and
M.
Nakahara
, “
Theory of solutions in the energy representation. II. Functional for the chemical potential
,”
J. Chem. Phys.
117
(
8
),
3605
3616
(
2002
).
25.
N.
Matubayasi
, “
Energy-representation theory of solutions: Its formulation and application to soft, molecular aggregates
,”
Bull. Chem. Soc. Jpn.
92
(
11
),
1910
1927
(
2019
).
26.
T.
Steinbrecher
,
I.
Joung
, and
D. A.
Case
, “
Soft-core potentials in thermodynamic integration: Comparing one- and two-step transformations
,”
J. Comput. Chem.
32
,
3253
3263
(
2011
).
27.
Z.
Tan
,
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
, “
Theory of binless multi-state free energy estimation with applications to protein-ligand binding
,”
J. Chem. Phys.
136
,
144102
(
2012
).
28.
E.
Gallicchio
,
M. M.
Kubo
, and
R. M.
Levy
, “
Entropy-enthalpy compensation in solvation and ligand binding revisited
,”
J. Am. Chem. Soc.
120
,
4526
4527
(
1998
).
29.
T. L.
Beck
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
The Potential Distribution Theorem and Models of Molecular Solutions
(
Cambridge University Press
,
New York
,
2006
).
30.
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
, “
Binding energy distribution analysis method (BEDAM) for estimation of protein–ligand binding affinities
,”
J. Chem. Theory Comput.
6
,
2961
2977
(
2010
).
31.
E.
Gallicchio
and
R. M.
Levy
, “
Recent theoretical and computational advances for modeling protein–ligand binding affinities
,”
Adv. Protein Chem. Struct. Biol.
85
,
27
80
(
2011
).
32.
T.-S.
Lee
,
B. K.
Radak
,
A.
Pabis
, and
D. M.
York
, “
A new maximum likelihood approach for free energy profile construction from molecular simulations
,”
J. Chem. Theory Comput.
9
(
1
),
153
164
(
2012
).
33.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, TensorFlow: Large-scale machine learning on heterogeneous systems,
2015
, Software available from tensorflow.org.
34.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
 et al., “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
(
7
),
e1005659
(
2017
).
35.
A. C.
Pan
,
H.
Xu
,
T.
Palpant
, and
D. E.
Shaw
, “
Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations
,”
J. Chem. Theory Comput.
13
(
7
),
3372
3377
(
2017
).
36.
C.
Ohlknecht
,
J.
Walther Perthold
,
B.
Lier
, and
C.
Oostenbrink
, “
Charge-changing perturbations and path sampling via classical molecular dynamic simulations of simple guest–host systems
,”
J. Chem. Theory Comput.
16
,
7721
7734
(
2020
).
37.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
38.
E.
Gallicchio
,
J.
Xia
,
W. F.
Flynn
,
B.
Zhang
,
S.
Samlalsingh
,
A.
Mentes
, and
R. M.
Levy
, “
Asynchronous replica exchange software for grid and heterogeneous computing
,”
Comput. Phys. Commun.
196
,
236
246
(
2015
).
39.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
, “
Multidimensional replica-exchange method for free-energy calculations
,”
J. Chem. Phys.
113
,
6042
6051
(
2000
).
40.
A. K.
Felts
,
Y.
Harano
,
E.
Gallicchio
, and
R. M.
Levy
, “
Free energy surfaces of β-hairpin and α-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model
,”
Proteins
56
,
310
321
(
2004
).
41.
K. P.
Ravindranathan
,
E.
Gallicchio
,
R. A.
Friesner
,
A. E.
McDermott
, and
R. M.
Levy
, “
Conformational equilibrium of cytochrome P450 BM-3 complexed with N-palmitoylglycine: A replica exchange molecular dynamics study
,”
J. Am. Chem. Soc.
128
,
5786
5791
(
2006
).
42.
H.
Okumura
,
E.
Gallicchio
, and
R. M.
Levy
, “
Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting
,”
J. Comput. Chem.
31
,
1357
1367
(
2010
).
43.
C. J.
Woods
,
J. W.
Essex
, and
M. A.
King
, “
The development of replica-exchange-based free-energy methods
,”
J. Phys. Chem. B
107
,
13703
13710
(
2003
).
44.
S. W.
Rick
, “
Increasing the efficiency of free energy calculations using parallel tempering and histogram reweighting
,”
J. Chem. Theory Comput.
2
,
939
946
(
2006
).
45.
T.
Simonson
, “
Gaussian fluctuations and linear response in an electron transfer protein
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
10
),
6544
6549
(
2002
).
46.
W.
Yang
,
R.
Bitetti-Putzer
, and
M.
Karplus
, “
Free energy simulations: Use of the reverse cumulative averaging to determine the equilibrated region and the time required for convergence
,”
J. Chem. Phys.
120
(
6
),
2618
2628
(
2003
).
47.
J. D.
Chodera
, “
A simple method for automated equilibration detection in molecular simulations
,”
J. Chem. Theory Comput.
12
(
4
),
1799
1805
(
2016
).
48.
T.-Q.
Yu
,
P.-Y.
Chen
,
M.
Chen
,
A.
Samanta
,
E.
Vanden-Eijnden
, and
M.
Tuckerman
, “
Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions
,”
J. Chem. Phys.
140
(
21
),
214109
(
2014
).
49.
D. L.
Mobley
,
S.
Liu
,
D. S.
Cerutti
,
W. C.
Swope
, and
J. E.
Rice
, “
Alchemical prediction of hydration free energies for SAMPL
,”
J. Comput. Aided Mol. Des.
26
(
5
),
551
562
(
2012
).
50.
D. L.
Mobley
,
É.
Dumont
,
J. D.
Chodera
, and
K. A.
Dill
, “
Comparison of charge models for fixed-charge force fields: Small-molecule hydration free energies in explicit solvent
,”
J. Phys. Chem. B
111
,
2242
2254
(
2007
).
51.
D.
Shivakumar
,
J.
Williams
,
Y.
Wu
,
W.
Damm
,
J.
Shelley
, and
W.
Sherman
, “
Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field
,”
J. Chem. Theory Comput.
6
(
5
),
1509
1519
(
2010
).
52.
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
, “
Alchemical free energy methods for drug discovery: Progress and challenges
,”
Curr. Opin. Struct. Biol.
21
,
150
160
(
2011
).
53.
C. D.
Christ
and
W. F.
van Gunsteren
, “
Multiple free energies from a single simulation: Extending enveloping distribution sampling to nonoverlapping phase-space distributions
,”
J. Chem. Phys.
128
(
17
),
174112
(
2008
).
54.
G.
König
,
N.
Glaser
,
B.
Schroeder
,
A.
Kubincová
,
P. H.
Hünenberger
, and
S.
Riniker
, “
An alternative to conventional λ-intermediate states in alchemical free energy calculations: λ-enveloping distribution sampling
,”
J. Chem. Inf. Model.
60
,
5407
5423
(
2020
).
55.
B. R.
Brooks
,
C. L.
Brooks
 III
,
A. D.
Mackerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
 et al., “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
(
10
),
1545
1614
(
2009
).
56.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
(
16
),
1781
1802
(
2005
).
57.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
58.
X.
He
,
S.
Liu
,
T.-S.
Lee
,
B.
Ji
,
V. H.
Man
,
D. M.
York
, and
J.
Wang
, “
Fast, accurate, and reliable protocols for routine calculations of protein–ligand binding affinities in drug design projects using AMBER GPU-TI with ff14SB/GAFF
,”
ACS Omega
5
(
9
),
4611
4619
(
2020
).
59.
A.
Rizzi
,
T.
Jensen
,
D. R.
Slochower
,
M.
Aldeghi
,
V.
Gapsys
,
D.
Ntekoumes
,
S.
Bosisio
,
M.
Papadourakis
,
N. M.
Henriksen
,
B. L.
De Groot
 et al., “
The SAMPL6 SAMPLing challenge: Assessing the reliability and efficiency of binding free energy calculations
,”
J. Comput. Aided Mol. Des.
34
,
601
633
(
2020
).
60.
E.
Darve
,
D.
Rodríguez-Gómez
, and
A.
Pohorille
, “
Adaptive biasing force method for scalar and vector free energy calculations
,”
J. Chem. Phys.
128
(
14
),
144120
(
2008
).
61.
P.
Procacci
, “
Solvation free energies via alchemical simulations: Let’s get honest about sampling, once more
,”
Phys. Chem. Chem. Phys.
21
,
13826
13834
(
2019
).
62.
M.
Macchiagodena
,
M.
Pagliai
,
M.
Karrenbrock
,
G.
Guido
,
F.
Iannone
, and
P.
Procacci
, “
Virtual double-system single-box: A nonequilibrium alchemical technique for absolute binding free energy calculations: Application to ligands of the SARS-CoV-2 main protease
,”
J. Chem. Theory Comput.
16
,
7160
7172
(
2020
).
63.
Q.
Lu
,
J.
Kim
, and
J. E.
Straub
, “
Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method
,”
J. Chem. Phys.
138
(
10
),
104119
(
2013
).
64.
K.
Wang
,
J. D.
Chodera
,
Y.
Yang
, and
M. R.
Shirts
, “
Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics
,”
J. Comput. Aided Mol. Des.
27
(
12
),
989
1007
(
2013
).
65.
E.
Gallicchio
,
R.
Pal
, and
S.
Sheenam
, “
Example of the use of the single-decoupling method setup workflow
,” Github, Version 0. 2. 0. 2020, https://github.com/egallicc/openmm_sdm_workflow.
66.
E.
Gallicchio
,
R.
Pal
, and
B.
Zhang
, “
OpenMM plugin to implement single-decoupling method in alchemical free energy calculations
,” Github. 2019, https://github.com/rajatkrpal/openmm_sdm_plugin.
67.
E.
Gallicchio
,
R.
Pal
, and
B.
Zhang
, “
Asynchronous Replica Exchange Framework for Heterogeneous Computing by using OpenMM engine
,” Github, Version 0. 2. 0. 2020, https://github.com/egallicc/async_re-openmm.
You do not currently have access to this content.