Atomistic modeling of energy and charge transfer at the heterojunction of organic solar cells is an active field with many remaining outstanding questions owing, in part, to the difficulties in performing reliable photodynamics calculations on very large systems. One approach to being able to overcome these difficulties is to design and apply an appropriate simplified method. Density-functional tight binding (DFTB) has become a popular form of approximate density-functional theory based on a minimal valence basis set and neglect of all but two center integrals. We report the results of our tests of a recent long-range correction (lc) [A. Humeniuk and R. Mitrić, J. Chem. Phys. 143, 134120 (2015)] for time-dependent (TD) lc-DFTB by carrying out TD-lc-DFTB fewest switches surface hopping calculations of energy and charge transfer times using the relatively new DFTBABY [A. Humeniuk and R. Mitrić, Comput. Phys. Commun. 221, 174 (2017)] program. An advantage of this method is the ability to run enough trajectories to get meaningful ensemble averages. Our interest in the present work is less in determining exact energy and charge transfer rates than in understanding how the results of these calculations vary with the value of the range-separation parameter (Rlc = 1/μ) for a model organic solar cell heterojunction consisting of a gas-phase van der Waals complex P/F made up of a single pentacene (P) molecule together with a single buckminsterfullerene (F) molecule. The default value of Rlc = 3.03 a0 is found to be much too small as neither energy nor charge transfer is observed until Rlc ≈ 10 a0. Tests at a single geometry show that the best agreement with high-quality ab initio spectra is obtained in the limit of no lc (i.e., very large Rlc). A plot of energy and charge transfer rates as a function of Rlc is provided, which suggests that a value of Rlc ≈ 15 a0 yields the typical literature (condensed-phase) charge transfer time of about 100 fs. However, energy and charge transfer times become as high as ∼300 fs for Rlc ≈ 25 a0. A closer examination of the charge transfer process P*/FP+/F shows that the initial electron transfer is accompanied by a partial delocalization of the P hole onto F, which then relocalizes back onto P, consistent with a polaron-like picture in which the nuclei relax to stabilize the resultant redistribution of charges.

1.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Dynamics
(
Wiley VCH
,
New York
,
2000
).
2.
H.
van Amerongen
,
R.
van Grondelle
, and
L.
Valkunas
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
3.
M.
Pope
and
C. Z.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
Oxford
,
1999
).
4.
T.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
R.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Fraunheim
, “
Tight-binding approach to time-dependent density-functional response theory
,”
Phys. Rev. B
63
,
085108
(
2001
).
5.
T.
Frauenheim
,
G.
Seifert
,
M.
Elstner
,
T.
Niehaus
,
C.
Köhler
,
M.
Amkreutz
,
M.
Sternberg
,
Z.
Hajnal
,
A. D.
Carlo
, and
S.
Suhai
, “
Atomistic simulations of complex materials: Ground-state and excited-state properties
,”
J. Phys.: Condens. Matter
14
,
3015
(
2002
).
6.
D.
Heringer
,
T. A.
Niehaus
,
M.
Wanko
, and
T.
Frauenheim
, “
Analytical excited state forces for the time-dependent density-functional tight-binding method
,”
J. Comput. Chem.
28
,
2589
(
2007
).
7.
T. A.
Niehaus
, “
Approximate time-dependent density functional theory
,”
J. Mol. Struct.: THEOCHEM
914
,
38
(
2009
).
8.
A.
Domínguez
,
B.
Aradi
,
T.
Frauenheim
,
V.
Lutsker
, and
T. A.
Niehaus
, “
Extensions of the time-dependent density functional based tight-binding approach
,”
J. Chem. Theory Comput.
9
,
4901
(
2013
).
9.
A.
Humeniuk
and
R.
Mitrić
, “
Long-range correction for tight-binding TD-DFT
,”
J. Chem. Phys.
143
,
134120
(
2015
).
10.
T. A.
Niehaus
and
F.
Della Sala
, “
Range separated functionals in the density functional tight-binding method
,”
Phys. Status Solidi B
249
,
237
(
2012
).
11.
V.
Lutsker
,
B.
Aradi
, and
T. A.
Niehaus
, “
Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
,”
J. Chem. Phys.
143
,
184107
(
2015
).
12.
V. Q.
Vuong
,
J.
Akkarapattiakal Kuriappan
,
M.
Kubillus
,
J. J.
Kranz
,
T.
Mast
,
T. A.
Niehaus
,
S.
Irle
, and
M.
Elstner
, “
Parameterization and benchmark of long-range corrected DFTB2 for organic molecules
,”
J. Chem. Theory Comput.
14
,
115
(
2018
).
13.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
, “
Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
,”
Phys. Rev.B.
51
,
12947
(
1995
).
14.
P.
Koskinen
and
V.
Mäkinen
, “
Density-functional tight-binding for beginners
,”
Comput. Mater. Sci.
47
,
237
(
2009
).
15.
M.
Elstner
and
G.
Seifert
, “
Density functional tight binding
,”
Philos. Trans. R. Soc. A
372
,
20120483
(
2014
).
16.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
(
1998
).
17.
S.
Hammes-Schiffer
and
J. C.
Tully
, “
Proton transfer in solution: Molecular dynamics with quantum transitions
,”
J. Chem. Phys.
101
,
4657
(
1994
).
18.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
(
1990
).
19.
A.
Humeniuk
and
R.
Mitrić
, “
DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-ranged corrected tight-binding TD-DFT(B)
,”
Comput. Phys. Commun.
221
,
174
(
2017
).
20.
21.
J.
Hoche
,
H.-C.
Schmitt
,
A.
Humeniuk
,
I.
Fischer
,
R.
Mitrić
, and
M. I. S.
Röhr
, “
The mechanism of excimer formation: An experimental and theoretical study on the pyrene dimer
,”
Phys. Chem. Chem. Phys.
19
,
25002
(
2017
).
22.
A. A. M. H. M.
Darghouth
,
G. C.
Correa
,
S.
Juillard
,
M. E.
Casida
,
A.
Humeniuk
, and
R.
Mitrić
, “
Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding
,”
J. Chem. Phys.
149
,
134111
(
2018
).
23.
E.
Titov
,
A.
Humeniuk
, and
R.
Mitrić
, “
Exciton localization in excited-state dynamics of a tetracene trimer: A surface hopping LC-TDDFTB study
,”
Phys. Chem. Chem. Phys.
20
,
25995
(
2018
).
24.
T.
Tran
,
A.
Prlj
,
K.-H.
Lin
,
D.
Hollas
, and
C.
Corminboeuf
, “
Mechanisms of fluorescence quenching in prototypical aggregation-induced emission systems: Excited state dynamics with TD-DFTB
,”
Phys. Chem. Chem. Phys.
21
,
9026
(
2019
).
25.
C. W.
Tang
, “
Two-layer organic photovoltaic cell
,”
Appl. Phys. Lett.
48
,
183
(
1986
).
26.
S.
Yoo
,
B.
Domercq
, and
B.
Kippelen
, “
Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions
,”
Appl. Phys. Lett.
85
,
5427
(
2004
).
27.
D. A.
Vithanage
,
A.
Devižis
,
V.
Abriamavičius
,
Y.
Infahsaeng
,
D.
Abriamavičius
,
R. C. I.
MacKenzie
,
P. E.
Keivanidis
,
A.
Yartsev
,
D.
Hertel
,
J.
Nelson
 et al, “
Visualizing charge separation in bulk heterojunction organic solar cells
,”
Nat. Commun
4
,
2334
(
2013
).
28.
G.
Li
,
R.
Zhu
, and
Y.
Yang
, “
Polymer solar cells
,”
Nat. Photonics
6
,
153
(
2012
).
29.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface
,”
J. Am. Chem. Soc.
136
,
1599
(
2014
).
30.
S. M.
Flake
,
C. A.
Rozzi
,
D.
Brida
,
M.
Maiuri
,
M.
Amato
,
E.
Sommer
,
A.
De Sio
,
A.
Rubio
,
G.
Cerullo
,
E.
Molinari
 et al, “
Coherent ultrafast charge transfer in an organic photovoltaic blend
,”
Science
344
,
1001
(
2014
).
31.
T. R.
Nelson
,
D.
Odarse-Alvarez
,
N.
Oldani
,
B.
Rodriguez-Hernandez
,
L.
Alfonso-Hernandez
,
J. F.
Galindo
,
V. D.
Kleiman
,
S.
Fernandez-Alberti
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Coherent exciton-vibrational dynamics and energy transfer in conjugated organics
,”
Nat. Commun.
9
,
2316
(
2018
).
32.
H. W.
Rathbone
,
J. A.
Davis
,
K. A.
Michie
,
S. C.
Goodchild
,
N. O.
Robertson
, and
P. M. G.
Curmi
, “
Coherent phenomena in photosynthetic light harvesting: Part one—Theory and spectroscopy
,”
Biophys. Rev.
10
,
1427
(
2018
).
33.
H. W.
Rathbone
,
J. A.
Davis
,
K. A.
Michie
,
S. C.
Goodchild
,
N. O.
Robertson
, and
P. M. G.
Curmi
, “
Coherent phenomena in photosynthetic light harvesting: Part two—Observations in biological systems
,”
Biophys. Rev.
10
,
1443
(
2018
).
34.
A.
De Sio
,
E.
Sommer
,
X. T.
Nguyen
,
L.
Groß
,
D.
Popović
,
B. T.
Nebgen
,
S.
Fernandez-Alberti
,
S.
Pittalis
,
C. A.
Rozzi
,
E.
Molinari
 et al, “
Intermolecular conical intersections in molecular aggregates
,”
Nat. Nanotechnol.
16
,
63
68
(
2021
).
35.
E. C. G.
Stueckelberg
, “
Theorie der unelastischen Stösse zwischen Atomen
,”
Helv. Phys. Acta
5
,
369
(
1932
).
36.
S.
Giannini
,
A.
Carof
,
M.
Ellis
,
H.
Yang
,
O. G.
Ziogos
,
S.
Ghosh
, and
J.
Blumberger
, “
Quantum localization and delocalization of charge carriers in organic semiconducting crystals
,”
Nat. Commun
10
,
3843
(
2019
).
37.
S.
Giannini
,
O. G.
Ziogos
,
A.
Carof
,
M.
Ellis
, and
J.
Blumberger
, “
Flickering polarons extending over ten nanometers mediate charge transport in high-mobility organic crystals
,”
Adv. Theory Simul.
3
,
2000093
(
2020
).
38.
S.
Gelinas
,
A.
Rao
,
A.
Kumar
,
S. L.
Smith
,
A. W.
Chin
,
J.
Clark
,
T. S.
van der Poll
,
G. C.
Bazan
, and
R. H.
Friend
, “
Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes
,”
Science
343
,
512
(
2014
).
39.
Y.
Song
,
S. N.
Clafton
,
R. D.
Pensack
,
T. W.
Kee
, and
G. D.
Scholes
, “
Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends
,”
Nat. Commun.
4
,
1602
(
2014
).
40.
S.
Joseph
,
M. K.
Ravva
, and
J.-L.
Brédas
, “
Charge-transfer dynamics in the lowest excited state of a pentacene-fullerene complex: Implications for organic solar cells
,”
J. Phys. Chem. Lett.
8
,
5171
(
2017
).
41.
I. A.
Howard
,
R.
Mauer
,
M.
Meister
, and
F.
Laquai
, “
Effect of morphology on ultrafast free carrier generation in polythiophene:fullerene organic solar cells
,”
J. Am. Chem. Soc.
132
,
14866
(
2010
).
42.
S.
De
,
T.
Pascher
,
M.
Maiti
,
K. G.
Jespersen
,
T.
Kesti
,
F.
Zhang
,
O.
Inganäs
,
A.
Yartsev
, and
V.
Sundström
, “
Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends
,”
J. Am. Chem. Soc.
129
,
8466
(
2007
).
43.
A. A.
Bakulin
,
A.
Rao
,
V. G.
Pavelyev
,
P. H. M.
van Loosdrecht
,
M. S.
Pshenichnikov
,
D.
Niedzialek
,
J.
Cornil
,
D.
Beljonne
, and
R. H.
Friend
, “
The role of driving energy and delocalized states for charge separation in organic semiconductors
,”
Science
335
,
1340
(
2012
).
44.
W.-L.
Chan
,
M.
Ligges
,
A.
Jailaubekov
,
L.
Kaake
,
L.
Miaja-Avila
, and
X. Y.
Zhu
, “
Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer
,”
Science
334
,
1541
(
2011
).
45.
Y.
Yi
,
V.
Coropceanu
, and
J.-L.
Brédas
, “
Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: Theoretical insight into the impact of interface geometry
,”
J. Am. Chem. Soc.
131
,
15777
(
2009
).
46.
B.-C.
Lin
,
B. T.
Koo
,
P.
Clancy
, and
C.-P.
Hsu
, “
Theoretical investigation of charge-transfer processes at pentacene-C60 interface: The importance of triplet charge separation and Marcus electron transfer theory
,”
J. Phys. Chem.
118
,
23605
(
2014
).
47.
B.
Yang
,
Y.
Yi
,
C.-R.
Zhang
,
S. G.
Aziz
,
V.
Coropceanu
, and
J.-L.
Brédas
, “
Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 interfaces: A density functional theory study
,”
J. Phys. Chem. C
118
,
27648
(
2014
).
48.
C.-R.
Zhang
,
J. S.
Sears
,
B.
Yang
,
S. G.
Aziz
,
V.
Coropceanu
, and
J.-L.
Brédas
, “
Theoretical study of the local and charge-transfer excitations in model complexes of pentacene-C60 using tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
10
,
2379
(
2014
).
49.
X.-K.
Chen
,
M. K.
Ravva
,
H.
Li
,
S. M.
Ryno
, and
J.-L.
Brédas
, “
Effect of molecular packing and charge delocalization on the nonradiative recombination of charge-transfer states in organic solar cells
,”
Adv. Energy Mater.
6
,
1601325
(
2016
).
50.
J.
Mack
and
G. P.
Miller
, “
Synthesis and characterization of a C60-pentacene monoadduct
,”
Fullerene Sci. Technol.
5
,
607
(
1997
).
51.
Y.
Murata
,
N.
Kato
,
K.
Fujiwara
, and
K.
Komatsu
, “
Solid-state [4+2] cycloaddition of fullerene C60 with condensed aromatics using a high-speed vibration milling technique
,”
J. Org. Chem.
64
,
3483
(
1999
).
52.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
53.
C.
Craig
,
W.
Duncan
, and
O.
Prezhdo
, “
Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics
,”
Phys. Rev. Lett.
95
,
163001
(
2005
).
54.
A. V.
Akimov
and
O. V.
Prezhdo
, “
The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems
,”
J. Chem. Theory Comput.
9
,
4959
(
2013
).
55.
N. T.
Maitra
, “
On correlated electron-nuclear dynamics using time-dependent density functional theory
,”
J. Chem. Phys.
125
,
014110
(
2006
).
56.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds?
,”
Mol. Phys.
97
,
859
(
1999
).
57.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
(
2003
).
58.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
(
2004
).
59.
S.
Totura
,
T.
Tsuneda
, and
K.
Hirao
, “
Long-range-corrected time-dependent density functional study on electronic spectra of five-membered ring compounds and free-base porphorin
,”
J. Theor. Comput. Chem.
5
,
925
(
2006
).
60.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Assessment of a long-range corrected hybrid functional
,”
J. Chem. Phys.
125
,
234109
(
2006
).
61.
M. J. G.
Peach
,
E. I.
Tellgren
,
P.
Sałek
,
T.
Helgaker
, and
D. J.
Tozer
, “
Structural and electronic properties of polyacetylene and polyyne from hybrid and coulomb-attenuated density functionals
,”
J. Phys. Chem. A
111
,
11930
(
2007
).
62.
E.
Livshits
and
R.
Baer
, “
A well-tempered density functional theory of electrons in molecules
,”
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
63.
E.
Livshits
and
R.
Baer
, “
A density functional theory for symmetric radical cations from bonding to dissociation
,”
J. Phys. Chem. A
112
,
12789
(
2008
).
64.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
A long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
(
2001
).
65.
T.
Bredow
and
K.
Jug
, “
Theory and range of modern semiempirical molecular orbital methods
,”
Theor. Chem. Acc.
113
,
1
(
2005
).
66.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Roethlisberger
, “
Trajectory surface hopping within linear response time-dependent density functional theory
,”
Phys. Rev. Lett.
98
,
023001
(
2007
).
67.
M. E.
Casida
,
Recent Advances in Density Functional Methods, Part I
, edited by
D.
Chong
(
World Scientific
,
Singapore
,
1995
), p.
155
.
68.
B. R.
Landry
,
M. J.
Falk
, and
J. E.
Subotnik
, “
Communication: The correct interpretation of surface hopping trajectories: How to calculate electronic properties
,”
J. Chem. Phys.
139
,
211101
(
2013
).
69.
B. R.
Landry
and
J. E.
Subotnik
, “
Communication: Standard surface hopping predicts incorrect scaling for Marcus’ golden-rule rate: The decoherence problem cannot be ignored
,”
J. Chem. Phys.
135
,
191101
(
2011
).
70.
B. R.
Landry
and
J. E.
Subotnik
, “
How to recover Marcus theory with fewest switches surface hopping: Add just a touch of decoherence
,”
J. Chem. Phys.
137
,
22A513
(
2012
).
71.
M. J.
Bedard-Hearn
,
R. E.
Larsen
, and
B. J.
Schwartz
, “
Mean-field dynamics with stochastic decoherence (MF-SD): A new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence
,”
J. Chem. Phys.
123
,
234106
(
2005
).
72.
C.
Zhu
,
S.
Nangia
,
A. W.
Jasper
, and
D. G.
Truhlar
, “
Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories
,”
J. Chem. Phys.
121
,
7658
(
2004
).
73.
G.
Granucci
and
M.
Persico
, “
Critical appraisal of the fewest switches algorithm for surface hopping
,”
J. Chem. Phys.
126
,
134114
(
2007
).
74.
M.
Kasha
,
H. R.
Rawls
, and
A.
El-Bayoumi
, “
The exciton model in molecular spectroscopy
,”
Pure Appl. Chem.
11
,
371
(
1965
).
75.
F.
Plasser
and
H.
Lischka
, “
Analysis of excitonic and charge transfer interactions from quantum chemical calculations
,”
J. Chem. Theory Comput.
8
,
2777
(
2012
).
76.
F.
Plasser
, “
TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations
,”
J. Chem. Phys.
152
,
084108
(
2020
).
77.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al, Gaussian 09, Revision D.01,
Gaussian, Inc.
,
2009
.
78.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
 et al, Gaussian 16, Revision A.03,
Gaussian, Inc.
,
2016
.
79.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system Turbomole
,”
Chem. Phys. Lett.
162
,
165
(
1989
).
80.
R.
Ahlrichs
,
M. K.
Armbruster
,
R. A.
Bachorz
,
M.
Bär
,
H.
Baron
,
R.
Bauernschmitt
,
F. A.
Bischoff
,
S.
Böcker
,
A. M.
Burow
,
N.
Crawford
 et al, TURBOMOLE V6.5, 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
81.
R.
Ahlrichs
,
M. K.
Armbruster
,
R. A.
Bachorz
,
M.
Bär
,
H.
Baron
,
R.
Bauernschmitt
,
F. A.
Bischoff
,
S.
Böcker
,
A. M.
Burow
,
N.
Crawford
 et al, TURBOMOLE V7.0, 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
82.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
(
1995
).
83.
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
,
2395
(
1982
).
84.
W.
Thiel
,
MNDO2005 Program, Version 7.0
(
Max-Planck-Institut für Kohlenforschung
,
Mühlheim, Germany
,
2005
).
85.
See http://www.crystallography.net/cod/ for Crystallography Open Database.
86.
S.
Schiefer
,
M.
Huth
,
A.
Dobrinevski
, and
B.
Nickel
, “
Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films
,”
J. Am. Chem. Soc.
129
,
10316
(
2007
).
87.
D. L.
Dorset
and
M. P.
McCourt
, “
Disorder and the molecular packing of C60 buckminsterfullerene: A direct electron-crystallographic analysis
,”
Acta Crystallogr. A
50
,
344
(
1994
).
88.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
89.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
90.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
,”
J. Phys. Chem.
98
,
11623
(
1994
).
91.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
(
1993
).
92.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
(
1972
).
93.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chimica Acta
28
,
213
(
1973
).
94.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
(
2004
).
95.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
96.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
97.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity calculations
,”
J. Chem. Phys.
116
,
3175
(
2002
).
98.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
99.
S.
Grimme
, “
Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies
,”
J. Chem. Phys.
118
,
9095
(
2003
).
100.
A.
Hellweg
,
S.
Grün
, and
C.
Hättig
, “
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states
,”
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
101.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Scaled opposite-spin second order Møller-Plesset correlation energy: An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
(
2004
).
102.
A. A. J.
Aquino
,
I.
Borges
, Jr.
,
R.
Nieman
,
A.
Köhn
, and
H.
Lischka
, “
Intermolecular interactions and charge transfer transitions in aromatic hydrocarbon-tetracyanoethylene complexes
,”
Phys. Chem. Chem. Phys.
16
,
20586
(
2014
).
103.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
104.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
105.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
, “
Parameterization and benchmark of DFTB3 for organic molecules
,”
J. Chem. Theory Comput.
9
,
338
(
2013
).
106.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
(
2020
).
107.
G.
Granucci
,
M.
Persico
, and
A.
Toniolo
, “
Direct semiclassical simulation of photochemical processes with semiempirical wave functions
,”
J. Chem. Phys.
114
,
10608
(
2001
).
108.
F.
Plasser
,
G.
Granucci
,
J.
Pittner
,
M.
Barbatti
,
M.
Persico
, and
H.
Lischka
, “
Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer
,”
J. Chem. Phys.
137
,
22A514
(
2012
).
109.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
, “
AM1: A new general purpose quantum mechanical molecular model
,”
J. Am. Chem. Soc.
107
,
3902
(
1985
).
110.
A.
Koslowski
,
M. E.
Beck
, and
W.
Thiel
, “
Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group Approach
,”
J. Comput. Chem.
24
,
714
(
2013
).
111.
E.
Fabiano
,
T. W.
Keal
, and
W.
Thiel
, “
Implementation of surface hopping molecular dynamics using semiempirical methods
,”
Chem. Phys.
349
,
334
(
2008
).
112.
J. O.
Lidner
,
K.
Sultangaleeva
,
M. I. S.
Röhr
, and
R.
Mitrić
, “
metaFALCON: A program package for automatic sampling of conical intersection seams using multistate metadynamics
,”
J. Chem. Theory Comput.
15
,
3450
(
2019
).
113.
J.
Berkowitz
, “
Photoelectron spectroscopy of phthalocyanine vapors
,”
J. Chem. Phys.
70
,
2819
(
1979
).
114.
B. W.
Larson
,
J. B.
Whitaker
,
X.-B.
Wang
,
A. A.
Popov
,
G.
Rumbles
,
N.
Kopidakis
,
S. H.
Strauss
, and
O. V.
Boltalina
, “
Electron affinity of phenyl-C61-butyric acid methyl ester (PCBM)
,”
J. Phys. Chem. C
117
,
14958
(
2013
).
115.
A. A. M. H. M.
Darghouth
,
M.
Casida
,
W.
Taouali
,
K.
Alimi
,
M.
Ljungberg
,
P.
Koval
,
D.
Sánchez-Portal
, and
D.
Foerster
, “
Assessment of density-functional tight-binding ionization potentials and electron affinities of molecules of interest for organic solar cells against first-principles GW calculations
,”
Computation
3
,
616
(
2015
).
116.
M.
Rapacioli
, personal communication (
2014
).
117.
W.
Taouali
,
M. E.
Casida
,
M.
Chemek
,
A. H.
Said
, and
K.
Alimi
, “
Theoretical investigation of oligomer structure and properties for [4-(Methxyphenyl)acetonitrile]n (n = 1–5)
,”
J. Mol. Model.
23
,
41
(
2017
).
118.
W.
Taouali
,
M. E.
Casida
,
A. A. M. H. M.
Darghouth
, and
K.
Alimi
, “
Theoretical design of new molecules with a low band-gap for solar cell applications: DFT and TD-DFT study
,”
Comput. Mater. Sci.
150
,
54
(
2018
).
119.
W.
Taouali
,
S.
Znaidia
,
M. E.
Casida
, and
K.
Alimi
, “
Rational design of (D-A) copolymers towards high efficiency organic solar cells: DFT and TD-DFT study
,”
J. Mol. Graph. Model.
89
,
139
(
2019
).
120.
N.
Komoto
,
T.
Yoshikawa
,
Y.
Nishimura
, and
H.
Nakai
, “
Large-scale molecular dynamics simulation for ground and excited states based on divide-and-conquer long-range corrected density-functional tight-binding method
,”
J. Chem. Theory Comput.
16
,
2369
(
2020
).
121.
A. F.
Oliveira
,
G.
Seifert
,
T.
Heine
, and
H. A.
Duarte
, “
Density-functional based tight-binding: An approximate DFT method
,”
J. Braz. Chem. Soc.
20
,
1193
(
2009
).
122.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
123.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer-Verlag
,
New York
,
1990
).
124.
W.
Koch
and
M. C.
Holthaussen
,
A Chemist’s Guide to Density Functional Theory: Introduction to the DFT
(
Wiley VCH
,
New York
,
2000
).
125.
M. E.
Casida
, “
Time-dependent density-functional theory for molecules and molecular solids
,”
J. Mol. Struct.: THEOCHEM.
914
,
3
(
2009
).
126.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
(
2012
).
127.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory
(
Oxford University Press
,
New York
,
2012
).
128.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics
,”
Chem. Rev.
118
,
7026
(
2018
).
129.
P.-O.
Löwdin
, “
Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction
,”
Phys. Rev.
97
,
1474
(
1955
).
130.
E.
Tapavicza
,
I.
Tavernelli
,
U.
Rothlisberger
,
C.
Filippi
, and
M. E.
Casida
, “
Mixed time-dependent density-functional theory/classical surface hopping study of oxirane photochemistry
,”
J. Chem. Phys.
129
,
124108
(
2008
).
131.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
(
2006
).
132.
R.
Send
and
F.
Furche
, “
First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance
,”
J. Chem. Phys.
132
,
044107
(
2010
).
133.
E.
Tapavicza
,
A. M.
Meyer
, and
F.
Furche
, “
Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
13
,
20986
(
2011
).

Supplementary Material

You do not currently have access to this content.