Over the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy. We find that, although at cryogenic temperature energy relaxation is very rapid, exciton mobility is limited over a significant range of excitation energies. This points to the presence of a sub-200 fs, spatially local energy-relaxation mechanism and suggests that local trapping might contribute substantially more in cryogenic experiments than under physiological conditions where the thermal energy is comparable to or larger than the static disorder.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
, 2nd ed. (
Wiley/Blackwell
,
Chichester, West Sussex
,
2014
).
3.
H.
Gaffron
and
E. W.
Fagen
,
Ann Rev Plant Phys
2
(
1
),
87
114
(
1951
).
4.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
5.
C. J.
Law
 et al.,
Mol. Membr. Biol.
21
,
183
(
2004
).
6.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
7.
V.
Perlik
 et al.,
J. Chem. Phys.
142
,
212434
(
2015
).
8.
V. P.
Singh
 et al.,
J. Chem. Phys.
142
,
212446
(
2015
).
9.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
10.
L. P.
Chen
 et al.,
J. Chem. Phys.
131
,
094502
(
2009
).
11.
C.
Curutchet
and
B.
Mennucci
,
Chem. Rev.
117
,
294
(
2017
).
12.
R. G.
Saer
and
R. E.
Blankenship
,
Biochem. J.
474
,
2107
(
2017
).
13.
G.
Mcdermott
 et al.,
Nature
374
,
517
(
1995
).
14.
K.
Timpmann
,
N. W.
Woodbury
, and
A.
Freiberg
,
J. Phys. Chem. B
104
,
9769
(
2000
).
15.
S.
Hess
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
92
,
12333
(
1995
).
16.
J. T. M.
Kennis
 et al.,
J. Phys. Chem. B
101
,
7827
(
1997
).
17.
H.-M.
Wu
 et al.,
J. Phys. Chem. B
101
,
7654
(
1997
).
18.
S.
Georgakopoulou
 et al.,
Biophys. J.
82
,
2184
(
2002
).
19.
S.
Jang
and
R. J.
Silbey
,
J. Chem. Phys.
118
,
9324
(
2003
).
20.
A. M.
van Oijen
 et al.,
Science
285
,
400
(
1999
).
21.
D.
Leupold
 et al.,
Phys. Rev. Lett.
77
,
4675
(
1996
).
22.
A.
Freiberg
 et al.,
J. Phys. Chem. B
107
,
11510
(
2003
).
23.
T.
Polivka
 et al.,
J. Phys. Chem. B
104
,
1088
(
2000
).
24.
L. D.
Book
 et al.,
J. Phys. Chem. B
104
,
8295
(
2000
).
25.
T.
Pullerits
,
M.
Chachisvilis
, and
V.
Sundström
,
J. Phys. Chem.
100
,
10787
(
1996
).
26.
O.
Kühn
and
V.
Sundström
,
J. Chem. Phys.
107
,
4154
(
1997
).
27.
S. J.
Jang
and
B.
Mennucci
,
Rev. Mod. Phys.
90
,
035003
(
2018
).
28.
G.
Trinkunas
 et al.,
Phys. Rev. Lett.
86
,
4167
(
2001
).
29.
M.
Dahlbom
 et al.,
J. Phys. Chem. B
105
,
5515
(
2001
).
30.
V.
Nagarajan
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
93
,
13774
(
1996
).
31.
R.
Kunz
 et al.,
Biophys. J.
106
,
2008
(
2014
).
32.
M.
Ratsep
 et al.,
J. Chem. Phys.
141
,
155102
(
2014
).
33.
R.
Kunz
 et al.,
J. Phys. Chem. B
116
,
11017
(
2012
).
34.
S.
Tretiak
 et al.,
J. Phys. Chem. B
104
,
9540
(
2000
).
35.
C.
Hofmann
 et al.,
New J. Phys.
6
,
8
(
2004
).
36.
D.
Grozdanov
 et al.,
J. Phys. Chem. B
114
,
3426
(
2010
).
37.
M.
Ratsep
 et al.,
J. Chem. Phys.
134
,
024506
(
2011
).
38.
A. M.
van Oijen
 et al.,
Biophys. J.
78
,
1570
(
2000
).
39.
40.
J. M.
Salverda
 et al.,
J. Phys. Chem. B
104
,
11395
(
2000
).
41.
M.
Wendling
 et al.,
Biophys. J.
84
,
440
(
2003
).
42.
V.
Novoderezhkin
,
M.
Wendling
, and
R.
van Grondelle
,
J. Phys. Chem. B
107
,
11534
(
2003
).
43.
J. I.
Ogren
 et al.,
Chem. Sci.
9
,
3095
(
2018
).
44.
A. L.
Tong
 et al.,
J. Phys. Chem. B
124
,
1460
(
2020
).
46.
M.
Ferretti
 et al.,
Sci. Rep.
6
,
20834
(
2016
).
48.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge, New York
,
2011
).
49.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
(
2004
).
50.
H.-M.
Wu
 et al.,
J. Phys. Chem.
100
,
12022
(
1996
).
51.
O.
Kühn
and
V.
Sundström
,
J. Phys. Chem. B
101
,
3432
(
1997
).
52.
K.
Wynne
and
R. M.
Hochstrasser
,
Chem. Phys.
171
,
179
(
1993
).
53.
E. R.
Smith
and
D. M.
Jonas
,
J. Phys. Chem. A
115
,
4101
(
2011
).
54.
M.
Ketelaars
 et al.,
Biophys. J.
80
,
1591
(
2001
).
55.
J.
Dostal
 et al.,
J. Am. Chem. Soc.
134
,
11611
(
2012
).
56.
S. H.
Sohail
 et al.,
J. Chem. Phys.
147
,
131101
(
2017
).
57.
J.
Dostal
 et al.,
Nat. Commun.
9
,
2466
(
2018
).
58.
J.
Lim
 et al.,
Nat. Commun.
6
,
7755
(
2015
).
59.
F.
Milota
 et al.,
J. Phys. Chem. A
117
,
6007
(
2013
).
60.
O.
Kühn
,
V.
Sundström
, and
T.
Pullerits
,
Chem. Phys.
275
,
15
(
2002
).
61.
R.
Augulis
and
D.
Zigmantas
,
Opt. Express
19
,
13126
(
2011
).
62.
A. T.
Gardiner
,
D. M.
Niedzwiedzki
, and
R. J.
Cogdell
,
Faraday Discuss.
207
,
471
(
2018
).

Supplementary Material

You do not currently have access to this content.