Despite lots of attempts on the bridging between full-atomistic and coarse-grained models for polymers, a practical methodology has not been established yet. One of the problems is computation costs for the determination of spatial and temporal conversion parameters, which are ideally obtained for the long chain limit. In this study, we propose a practical, yet quantitative, bridging method utilizing the simulation results for rather short chains. We performed full-atomistic simulations for polybutadiene and some poly(butadiene–styrene) copolymers in the melt state by varying the number of repeating units as 20, 30, and 40. We attempted to construct corresponding coarse-grained models for such systems. We employed the Kremer–Grest type bead-spring chains with bending rigidity. The stiffness parameter of coarse-grained models and the spatial conversion factor between the full-atomistic and coarse-grained models were obtained according to the conformational statistics of polymer chains. Although such a bridging strategy is similar to the earlier studies, we incorporated the molecular weight dependence of the conformational statistics for the first time. By introducing several empirical functions of the conformational statistics for the molecular weight dependence, we attained a rigorous bridging for the conformational statistics. We confirmed that the structural distribution functions of the coarse-grained systems are entirely consistent with the target full-atomistic ones. Owing to the structural conversion parameters thus obtained, we constructed the coarse-grained models that corresponded to the polymers consisting of 200 repeating units and traced the segmental diffusion. The full-atomistic simulations were also performed from the initial configurations created from the equilibrated coarse-grained models via the back-mapping scheme. From the comparison of the mean-square-displacement of the segments positioned at the middle of the chain, we obtained the temporal conversion factors.

1.
J.
Baschnagel
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
,
W.
Paul
,
S.
Santos
,
U. W.
Suter
, and
V.
Tries
, “
Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives
,”
Adv. Polym. Sci.
152
,
41
156
(
2000
).
2.
S. C.
Glotzer
and
W.
Paul
, “
Molecular and mesoscale simulation methods for polymer materials
,”
Annu. Rev. Mater. Sci.
32
,
401
436
(
2002
).
3.
M.
Kröger
, “
Simple models for complex nonequilibrium fluids
,”
Phys. Rep.
390
(
6
),
453
551
(
2004
).
4.
C.
Peter
and
K.
Kremer
, “
Multiscale simulation of soft matter systems—From the atomistic to the coarse-grained level and back
,”
Soft Matter
5
(
22
),
4357
4366
(
2009
).
5.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
6.
F.
Müller-Plathe
, “
Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back
,”
ChemPhysChem
3
(
9
),
754
769
(
2002
).
7.
J. J.
de Pablo
, “
Coarse-grained simulations of macromolecules: From DNA to nanocomposites
,”
Annu. Rev. Phys. Chem.
62
,
555
574
(
2011
).
8.
G.
Giunta
,
C.
Svaneborg
,
H. A.
Karimi-Varzaneh
, and
P.
Carbone
, “
Effects of graphite and plasticizers on the structure of highly entangled polyisoprene melts
,”
ACS Appl. Polym. Mater.
2
,
317
325
(
2020
).
9.
K. G.
Honnell
,
J. G.
Curro
, and
K. S.
Schweizer
, “
Local structure of semiflexible polymer melts
,”
Macromolecules
23
(
14
),
3496
3505
(
1990
).
10.
M.
Kröger
, “
Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses
,”
Comput. Phys. Commun.
118
(
2-3
),
278
298
(
1999
).
11.
R.
Faller
and
F.
Müller-Plathe
, “
Chain stiffness intensifies the reptation characteristics of polymer dynamics in the melt
,”
ChemPhysChem
2
(
3
),
180
184
(
2001
).
12.
H.
Meyer
and
F.
Müller-Plathe
, “
Formation of chain-folded structures in supercooled polymer melts
,”
J. Chem. Phys.
115
(
17
),
7807
7810
(
2001
).
13.
R.
Auhl
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
, “
Equilibration of long chain polymer melts in computer simulations
,”
J. Chem. Phys.
119
(
24
),
12718
(
2003
).
14.
M.
Kröger
,
W.
Loose
, and
S.
Hess
, “
Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics
,”
J. Rheol.
37
(
6
),
1057
1079
(
1993
).
15.
J.
Gao
and
J. H.
Weiner
, “
Simulated polymer melt stress relaxation. I. Plateau behavior
,”
J. Chem. Phys.
103
(
4
),
1614
1620
(
1995
).
16.
K.
Kremer
and
F.
Müller-Plathe
, “
Multiscale problems in polymer science: Simulation approaches
,”
MRS Bull.
26
(
3
),
205
210
(
2001
).
17.
R.
Faller
, “
Automatic coarse graining of polymers
,”
Polymer
45
(
11
),
3869
3876
(
2004
).
18.
C.
Peter
and
K.
Kremer
, “
Multiscale simulation of soft matter systems
,”
Faraday Discuss.
144
,
9
24
(
2010
).
19.
V. A.
Harmandaris
,
N. P.
Adhikari
,
N. F. A.
van der Vegt
, and
K.
Kremer
, “
Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations
,”
Macromolecules
39
(
19
),
6708
6719
(
2006
).
20.
A.
Baba
and
Y.
Masubuchi
, “
A quantitative connection between full-atom and bead-spring models of polymers
,” in
International Congress on Rheology 2016
,
Kyoto, Japan
,
5 August 2016
.
21.
K. Z.
Takahashi
,
R.
Nishimura
,
N.
Yamato
,
K.
Yasuoka
, and
Y.
Masubuchi
, “
Onset of static and dynamic universality among molecular models of polymers
,”
Sci. Rep.
7
,
12379
(
2017
).
22.
R.
Everaers
,
H. A.
Karimi-Varzaneh
,
F.
Fleck
,
N.
Hojdis
, and
C.
Svaneborg
, “
Kremer-Grest models for commodity polymer melts: Linking theory, experiment, and simulation at the Kuhn scale
,”
Macromolecules
53
,
1901
1916
(
2020
).
23.
N. C.
Karayiannis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
, “
A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture
,”
Phys. Rev. Lett.
88
(
10
),
105503
(
2002
).
24.
S. W. I.
Siu
,
K.
Pluhackova
, and
R. A.
Böckmann
, “
Optimization of the OPLS-AA force field for long hydrocarbons
,”
J. Chem. Theory Comput.
8
(
4
),
1459
1470
(
2012
).
25.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
(
45
),
11225
11236
(
1996
).
26.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
27.
L. J.
Fetters
,
D. J.
Lohse
, and
R. H.
Colby
, “
Chain dimensions and entanglement spacings
,” in
Physical Properties of Polymers Handbook
, edited by
J. E.
Mark
(
Springer
,
New York, NY
,
2007
).
You do not currently have access to this content.