Quantifying the optical extinction cross section of a plasmonic nanoparticle has recently emerged as a powerful means to characterize the nanoparticle morphologically, i.e., to determine its size and shape with a precision comparable to electron microscopy while using a simple optical microscope. In this context, a critical piece of information to solve the inverse problem, namely, calculating the particle geometry from the measured cross section, is the material permittivity. For bulk gold, many datasets have been reported in the literature, raising the question of which one is more adequate to describe specific systems at the nanoscale. Another question is how the nanoparticle interface, not present in the bulk material, affects its permittivity. In this work, we have investigated the role of the material permittivities on the morphometric characterization of defect-free ultra-uniform gold nanospheres with diameters of 10 nm and 30 nm, following a quantitative analysis of the polarization- and spectrally-resolved extinction cross section on hundreds of individual nanoparticles. The measured cross sections were fitted using an ellipsoid model. By minimizing the fit error or the variation of the fitted dimensions with color channel selection, the material permittivity dataset and the surface damping parameter g best describing the nanoparticles are found to be the single crystal dataset by Olmon et al. [Phys. Rev. B 86, 235147 (2012)] and g ≈ 1, respectively. The resulting nanoparticle geometries are in good agreement with transmission electron microscopy of the same sample batches, including both 2D projection and tomography.

1.
R. L.
Olmon
,
B.
Slovick
,
T. W.
Johnson
,
D.
Shelton
,
S.-H.
Oh
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of gold
,”
Phys. Rev. B
86
,
235147
(
2012
).
2.
A.
Crut
,
P.
Maioli
,
N.
Del Fatti
, and
F.
Vallée
, “
Optical absorption and scattering spectroscopies of single nano-objects
,”
Chem. Soc. Rev.
43
,
3921
3956
(
2014
).
3.
L. M.
Payne
,
W.
Langbein
, and
P.
Borri
, “
Polarization-resolved extinction and scattering cross-section of individual gold nanoparticles measured by wide-field microscopy on a large ensemble
,”
Appl. Phys. Lett.
102
,
131107
(
2013
).
4.
A.
Zilli
,
W.
Langbein
, and
P.
Borri
, “
Quantitative measurement of the optical cross sections of single nano-objects by correlative transmission and scattering microspectroscopy
,”
ACS Photonics
6
,
2149
2160
(
2019
).
5.
D.
Boyer
,
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
, “
Photothermal imaging of nanometer-sized metal particles among scatterers
,”
Science
297
,
1160
1163
(
2002
).
6.
M.
Husnik
,
S.
Linden
,
R.
Diehl
,
J.
Niegemann
,
K.
Busch
, and
M.
Wegener
, “
Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas
,”
Phys. Rev. Lett.
109
,
233902
(
2012
).
7.
A.
Tcherniak
,
J. W.
Ha
,
S.
Dominguez-Medina
,
L. S.
Slaughter
, and
S.
Link
, “
Probing a century old prediction one plasmonic particle at a time
,”
Nano Lett.
10
,
1398
1404
(
2010
).
8.
A.
Arbouet
,
D.
Christofilos
,
N.
Del Fatti
,
F.
Vallée
,
J. R.
Huntzinger
,
L.
Arnaud
,
P.
Billaud
, and
M.
Broyer
, “
Direct measurement of the single-metal-cluster optical absorption
,”
Phys. Rev. Lett.
93
,
127401
(
2004
).
9.
O. L.
Muskens
,
P.
Billaud
,
M.
Broyer
,
N.
Del Fatti
, and
F.
Vallée
, “
Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment
,”
Phys. Rev. B
78
,
205410
(
2008
).
10.
P.
Stoller
,
V.
Jacobsen
, and
V.
Sandoghdar
, “
Measurement of the complex dielectric constant of a single gold nanoparticle
,”
Opt. Lett.
31
,
2474
2476
(
2006
).
11.
S.
Khadir
,
D.
Andrén
,
P. C.
Chaumet
,
S.
Monneret
,
N.
Bonod
,
M.
Käll
,
A.
Sentenac
, and
G.
Baffou
, “
Full optical characterization of single nanoparticles using quantitative phase imaging
,”
Optica
7
,
243
248
(
2020
).
12.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
13.
K. M.
McPeak
,
S. V.
Jayanti
,
S. J. P.
Kress
,
S.
Meyer
,
S.
Iotti
,
A.
Rossinelli
, and
D. J.
Norris
, “
Plasmonic films can easily be better: Rules and recipes
,”
ACS Photonics
2
,
326
333
(
2015
).
14.
N. A.
Mortensen
,
S.
Raza
,
M.
Wubs
,
T.
Søndergaard
, and
S. I.
Bozhevolnyi
, “
A generalized non-local optical response theory for plasmonic nanostructures
,”
Nat. Commun.
5
,
3809
(
2014
).
15.
T.
Christensen
,
W.
Yan
,
A.-P.
Jauho
,
M.
Soljačić
, and
N. A.
Mortensen
, “
Quantum corrections in nanoplasmonics: Shape, scale, and material
,”
Phys. Rev. Lett.
118
,
157402
(
2017
).
16.
D.
Gall
, “
Electron mean free path in elemental metals
,”
J. Appl. Phys.
119
,
085101
(
2016
).
17.
C.
Voisin
,
N.
Del Fatti
,
D.
Christofilos
, and
F.
Vallée
, “
Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles
,”
J. Phys. Chem. B
105
,
2264
2280
(
2001
).
18.
B.
Foerster
,
A.
Joplin
,
K.
Kaefer
,
S.
Celiksoy
,
S.
Link
, and
C.
Sönnichsen
, “
Chemical interface damping depends on electrons reaching the surface
,”
ACS Nano
11
,
2886
2893
(
2017
).
19.
L. M.
Payne
,
W.
Albrecht
,
W.
Langbein
, and
P.
Borri
, “
The optical nanosizer—Quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy
,”
Nanoscale
12
,
16215
16228
(
2020
).
20.
F.
Masia
,
W.
Langbein
, and
P.
Borri
, “
Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope
,”
Phys. Rev. B
85
,
235403
(
2012
).
21.
M.
Guerrisi
,
R.
Rosei
, and
P.
Winsemius
, “
Splitting of the interband absorption edge in Au
,”
Phys. Rev. B
12
,
557
563
(
1975
).
22.
C.
Voisin
,
D.
Christofilos
,
P. A.
Loukakos
,
N. D.
Fatti
,
F.
Vallée
,
J.
Lermé
,
M.
Gaudry
,
E.
Cottancin
,
M.
Pellarin
, and
M.
Broyer
, “
Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles
,”
Phys. Rev. B
69
,
195416
(
2004
).
23.
L. M.
Payne
,
W.
Langbein
, and
P.
Borri
, “
Wide-field imaging of single-nanoparticle extinction with sub-nm2 sensitivity
,”
Phys. Rev. Appl.
9
,
034006
(
2018
).
24.
T. K.
Moon
, “
The expectation-maximization algorithm
,”
IEEE Signal Process. Mag.
13
,
47
60
(
1996
).
25.
W.
van Aarle
,
W. J.
Palenstijn
,
J.
De Beenhouwer
,
T.
Altantzis
,
S.
Bals
,
K. J.
Batenburg
, and
J.
Sijbers
, “
The ASTRA toolbox: A platform for advanced algorithm development in electron tomography
,”
Ultramicroscopy
157
,
35
47
(
2015
).
You do not currently have access to this content.