In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.

1.
J.
Čižek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
2.
J.
Čižek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
89
(
1969
).
3.
J.
Čížek
and
J.
Paldus
, “
Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods
,”
Int. J. Quantum Chem.
5
,
359
379
(
1971
).
4.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
P.
Szakács
and
P. R.
Surján
, “
Iterative solution of Bloch-type equations: Stability conditions and chaotic behavior
,”
J. Math. Chem.
43
,
314
327
(
2008
).
6.
P.
Szakács
and
P. R.
Surján
, “
Stability conditions for the coupled cluster equations
,”
Int. J. Quantum Chem.
108
,
2043
2052
(
2008
).
7.
V.
Agarawal
,
A.
Chakraborty
, and
R.
Maitra
, “
Stability analysis of a double similarity transformed coupled cluster theory
,”
J. Chem. Phys.
153
,
084113
(
2020
).
8.
R.
Maitra
and
T.
Nakajima
, “
Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing
,”
J. Chem. Phys.
147
,
204108-1
204108-8
(
2017
).
9.
R.
Maitra
,
Y.
Akinaga
, and
T.
Nakajima
, “
A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential
,”
J. Chem. Phys.
147
,
074103-1
074103-10
(
2017
).
10.
S.
Tribedi
,
A.
Chakraborty
, and
R.
Maitra
, “
Formulation of a dressed coupled-cluster method with implicit triple excitations and benchmark application to hydrogen-bonded systems
,”
J. Chem. Theory Comput.
16
,
6317
6328
(
2020
).
11.
H.
Haken
, “
Synergetics: An overview
,”
Rep. Prog. Phys.
52
,
515
553
(
1989
).
12.
H.
Haken
and
A.
Wunderlin
, “
Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps
,”
Z. Phys. B
47
,
179
187
(
1982
).
13.
H.
Haken
, “
Nonlinear equations. The slaving principle
,” in
Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(
Springer
,
Berlin, Heidelberg
,
1983
), pp.
187
221
.
14.
K. P.
Murphy
,
Machine Learning: A Probabilistic Perspective
(
MIT Press
,
2012
).
15.
L.
Cheng
,
N. B.
Kovachki
,
M.
Welborn
, and
T. F.
Miller
 III
, “
Regression clustering for improved accuracy and training costs with molecular-orbital-based machine learning
,”
J. Chem. Theory Comput.
15
,
6668
6677
(
2019
).
16.
J. T.
Margraf
and
K.
Reuter
, “
Making the coupled cluster correlation energy machine-learnable
,”
J. Phys. Chem. A
122
,
6343
6348
(
2018
).
17.
J.
Townsend
and
K. D.
Vogiatzis
, “
Data-driven acceleration of the coupled-cluster singles and doubles iterative solver
,”
J. Phys. Chem. Lett.
10
,
4129
4135
(
2019
).
18.
B. G.
Peyton
,
C.
Briggs
,
R.
D’Cunha
,
J. T.
Margraf
, and
T. D.
Crawford
, “
Machine-learning coupled cluster properties through a density tensor representation
,”
J. Phys. Chem. A
124
,
4861
4871
(
2020
).
19.
D.
Folmsbee
and
G.
Hutchison
, “
Assessing conformer energies using electronic structure and machine learning methods
,”
Int. J. Quantum Chem.
121
,
e26381
(
2020
).
20.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
99
(
2019
).
21.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
, “
Transferability in machine learning for electronic structure via the molecular orbital basis
,”
J. Chem. Theory Comput.
14
,
4772
4779
(
2018
).
22.
K.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
23.
J.-P.
Eckmann
,
S.
Kamphorts
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
937
977
(
1987
).
24.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
25.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, www.recurrence-plot.tk recurrence plots; accessed May 19, 2020, for further discussion on the recurrence analysis.
26.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
27.
See https://github.com/compmolsci/cc-ml-scheme accessed December 10, 2020, for accessing the code developed in this paper.

Supplementary Material

You do not currently have access to this content.