The hyperbolic dependence of catalytic rate on substrate concentration is a classical result in enzyme kinetics, quantified by the celebrated Michaelis–Menten equation. The ubiquity of this relation in diverse chemical and biological contexts has recently been rationalized by a graph-theoretic analysis of deterministic reaction networks. Experiments, however, have revealed that “molecular noise”—intrinsic stochasticity at the molecular scale—leads to significant deviations from classical results and to unexpected effects like “molecular memory,” i.e., the breakdown of statistical independence between turnover events. Here, we show, through a new method of analysis, that memory and non-hyperbolicity have a common source in an initial, and observably long, transient peculiar to stochastic reaction networks of multiple enzymes. Networks of single enzymes do not admit such transients. The transient yields, asymptotically, to a steady-state in which memory vanishes and hyperbolicity is recovered. We propose new statistical measures, defined in terms of turnover times, to distinguish between the transient and steady-states and apply these to experimental data from a landmark experiment that first observed molecular memory in a single enzyme with multiple binding sites. Our study shows that catalysis at the molecular level with more than one enzyme always contains a non-classical regime and provides insight on how the classical limit is attained.

1.
A.
Cornish-Bowden
and
A.
Cornish-Bowden
,
Fundamentals of Enzyme Kinetics
(
Wiley-Blackwell Weinheim
,
Germany
,
2012
), Vol. 510.
2.
L.
Michaelis
and
M. L.
Menten
,
Biochem. Z.
49
,
333
(
1913
).
3.
A.
Cornish-Bowden
,
Perspect. Sci.
4
,
3
(
2015
).
4.
U.
Deichmann
,
S.
Schuster
,
J.-P.
Mazat
, and
A.
Cornish-Bowden
,
FEBS J.
281
,
435
(
2014
).
5.
H.
Lineweaver
and
D.
Burk
,
J. Am. Chem. Soc.
56
,
658
(
1934
).
6.
F.
Wong
,
A.
Dutta
,
D.
Chowdhury
, and
J.
Gunawardena
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
9738
(
2018
).
7.
H. P.
Lu
,
L.
Xun
, and
X. S.
Xie
,
Science
282
,
1877
(
1998
).
9.
X.
Xie
and
H.
Lu
,
Single Molecule Spectroscopy
(
Springer
,
2001
), pp.
227
240
.
10.
B. P.
English
,
W.
Min
,
A. M.
Van Oijen
,
K. T.
Lee
,
G.
Luo
,
H.
Sun
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Nat. Chem. Biol.
2
,
87
(
2006
).
11.
W.
Min
,
B. P.
English
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Acc. Chem. Res.
38
,
923
(
2005
).
12.
H. H.
Gorris
,
D. M.
Rissin
, and
D. R.
Walt
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
17680
(
2007
).
13.
S.
Saha
,
S.
Ghose
,
R.
Adhikari
, and
A.
Dua
,
Phys. Rev. Lett.
107
,
218301
(
2011
).
14.
A.
Kumar
,
R.
Adhikari
, and
A.
Dua
,
Phys. Rev. Lett.
119
,
099802
(
2017
).
16.
J.
Cao
,
J. Phys. Chem. B
115
,
5493
(
2011
).
17.
D. E.
Piephoff
,
J.
Wu
, and
J.
Cao
,
J. Phys. Chem. Lett.
8
,
3619
(
2017
).
18.
D. A.
McQuarrie
,
J. Appl. Probab.
4
,
413
(
1967
).
19.
A. F.
Bartholomay
,
Biochemistry
1
,
223
(
1962
).
20.
G. E.
Briggs
and
J. B. S.
Haldane
,
Biochem. J.
19
,
338
(
1925
).
21.
W.
Xu
,
J. S.
Kong
,
Y.-T. E.
Yeh
, and
P.
Chen
,
Nat. Mater.
7
,
992
(
2008
).
22.
W.
Xu
,
H.
Shen
,
G.
Liu
, and
P.
Chen
,
Nano Res.
2
,
911
(
2009
).
23.
W.
Xu
,
J. S.
Kong
, and
P.
Chen
,
Phys. Chem. Chem. Phys.
11
,
2767
(
2009
).
24.
D. J.
Daley
and
D.
Vere-Jones
,
An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure
(
Springer Science
,
2007
).
25.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer-Verlag
,
Berlin
,
2004
), Vol. 13.
26.
D. R.
Cox
,
Renewal Theory
(
Wiley
,
London; Methuen; New York
,
1962
).
27.
M. J.
Schnitzer
and
S.
Block
,
Cold Spring Harbor Symposia on Quantitative Biology
(
Cold Spring Harbor Laboratory Press
,
1995
), Vol. 60, pp.
793
802
.
28.
K.
Svoboda
,
P. P.
Mitra
, and
S. M.
Block
,
Proc. Natl. Acad. Sci. U. S. A.
91
,
11782
(
1994
).
29.
K. C.
Neuman
,
O. A.
Saleh
,
T.
Lionnet
,
G.
Lia
,
J.-F.
Allemand
,
D.
Bensimon
, and
V.
Croquette
,
J. Phys.: Condens. Matter
17
,
S3811
(
2005
).
30.
R.
Zwanzig
,
Acc. Chem. Res.
23
,
148
(
1990
).
31.
R.
Zwanzig
,
J. Chem. Phys.
97
,
3587
(
1992
).
32.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
33.
A.
Kumar
,
H.
Maity
, and
A.
Dua
,
J. Phys. Chem. B
119
,
8490
(
2015
).
35.
J. R.
Moffitt
,
Y. R.
Chemla
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
15739
(
2010
).
36.
J. R.
Moffitt
and
C.
Bustamante
,
FEBS J.
281
,
498
(
2014
).
37.
A.
David
and
S.
Larry
, “
Communications in statistics
,”
Stochastic Models
3
,
467
(
1987
).
38.
A. K.
Erlang
,
Post Off. Electr. Eng. J.
10
,
189
(
1917
).
39.
D. R.
Cox
and
W. L.
Smith
,
Biometrika
41
,
91
(
1954
).
40.
W. L.
Smith
,
Proc. R. Soc. Edinburgh A: Math.
64
,
9
(
1953
).
41.
W. L.
Smith
,
Biometrika
46
,
1
(
1959
).
42.
A. B.
Kolomeisky
and
M. E.
Fisher
,
Annu. Rev. Phys. Chem.
58
,
675
(
2007
).
44.
S. L.
Marchesi
,
E.
Steers
, Jr.
, and
S.
Shifrin
,
Biochim. Biophys. Acta
181
,
20
(
1969
).
45.
G. H.
Seong
,
J.
Heo
, and
R. M.
Crooks
,
Anal. Chem.
75
,
3161
(
2003
).
46.
A. G.
Hadd
,
D. E.
Raymond
,
J. W.
Halliwell
,
S. C.
Jacobson
, and
J. M.
Ramsey
,
Anal. Chem.
69
,
3407
(
1997
).
47.
48.
49.
S.
Yang
and
J.
Cao
,
J. Chem. Phys.
117
,
10996
(
2002
).
50.
S. C.
Kou
,
B. J.
Cherayil
,
W.
Min
,
B. P.
English
, and
X. S.
Xie
,
J. Phys. Chem. B
109
,
19068
(
2005
).
51.
T. R.
Avila
,
D. E.
Piephoff
, and
J.
Cao
,
J. Phys. Chem. B
121
,
7750
(
2017
).
52.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. B
112
,
12867
(
2008
).
53.
A.
Kumar
,
S.
Chatterjee
,
M.
Nandi
, and
A.
Dua
,
J. Chem. Phys.
145
,
085103
(
2016
).
54.
J.
Monod
,
J.
Wyman
, and
J.-P.
Changeux
,
J. Mol. Biol.
12
,
88
(
1965
).
55.
D. E.
Koshland
,
G.
Némethy
, and
D.
Filmer
,
Biochemistry
5
,
365
(
1966
).
56.
P.
Mogalisetti
,
H. H.
Gorris
,
M. J.
Rojek
, and
D. R.
Walt
,
Chem. Sci.
5
,
4467
(
2014
).
57.
S.
Saha
,
A.
Sinha
, and
A.
Dua
,
J. Chem. Phys.
137
,
045102
(
2012
).
58.
H.
Shen
,
X.
Zhou
,
N.
Zou
, and
P.
Chen
,
J. Phys. Chem. C
118
,
26902
(
2014
).
59.
W. J.
Ramsay
,
N. A. W.
Bell
,
Y.
Qing
, and
H.
Bayley
,
J. Am. Chem. Soc.
140
,
17538
(
2018
).
60.
J.
Cao
,
J. Phys. Chem. B
110
,
19040
(
2006
).
61.
M.
Panigrahy
,
A.
Kumar
,
S.
Chowdhury
, and
A.
Dua
,
J. Chem. Phys.
150
,
204119
(
2019
).
62.
S. L.
Rudge
and
D. S.
Kosov
,
J. Chem. Phys.
151
,
034107
(
2019
).
63.
K.
Kaasbjerg
and
W.
Belzig
,
Phys. Rev. B
91
,
235413
(
2015
).
64.
K.
Ptaszyński
,
Phys. Rev. E
97
,
012127
(
2018
).
65.
S. L.
Rudge
and
D. S.
Kosov
,
Phys. Rev. B
99
,
115426
(
2019
).
66.
A.
Kurzmann
,
P.
Stegmann
,
J.
Kerski
,
R.
Schott
,
A.
Ludwig
,
A. D.
Wieck
,
J.
Knig
,
A.
Lorke
, and
M.
Geller
,
Phys. Rev. Lett.
122
,
247403
(
2019
).
67.
P.
Stegmann
,
B.
Sothmann
,
A.
Hucht
, and
J.
Knig
,
Phys. Rev. B
92
,
155413
(
2015
).
68.
E.
Kleinherbers
,
P.
Stegmann
, and
J.
König
,
New J. Phys.
20
,
073023
(
2018
).
69.
P.
Stegmann
and
J.
Knig
,
Phys. Rev. B
94
,
125433
(
2016
).
70.
I.
Chung
,
J. B.
Witkoskie
,
J.
Cao
, and
M. G.
Bawendi
,
Phys. Rev. E
73
,
011106
(
2006
).
71.
I.
Chung
,
J. B.
Witkoskie
,
J. P.
Zimmer
,
J.
Cao
, and
M. G.
Bawendi
,
Phys. Rev. B
75
,
045311
(
2007
).
72.
A.
Zellner
,
Bayesian Analysis in Econometrics and Statistics
(
Edward Elgar Publishing
,
1997
).
73.
H.
Jeffreys
,
The Theory of Probability
(
OUP Oxford
,
1998
).
74.
E. T.
Jaynes
,
Probability Theory: The Logic of Science
(
Cambridge University Press
,
2003
).

Supplementary Material

You do not currently have access to this content.