The products formed following the photodissociation of UV (200 nm) excited CS2 are monitored in a time resolved photoelectron spectroscopy experiment using femtosecond XUV (21.5 eV) photons. By spectrally resolving the electrons, we identify separate photoelectron bands related to the CS2 + hν → S(1D) + CS and CS2 + hν → S(3P) + CS dissociation channels, which show different appearance and rise times. The measurements show that there is no delay in the appearance of the S(1D) product contrary to the results of Horio et al. [J. Chem. Phys. 147, 013932 (2017)]. Analysis of the photoelectron yield associated with the atomic products allows us to obtain a S(3P)/S(1D) branching ratio and the rate constants associated with dissociation and intersystem crossing rather than the effective lifetime observed through the measurement of excited state populations alone.

1.
C. Z.
Bisgaard
,
O. J.
Clarkin
,
G.
Wu
,
A. M. D.
Lee
,
O.
Gessner
,
C. C.
Hayden
, and
A.
Stolow
, “
Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules
,”
Science
323
,
1464
1468
(
2009
).
2.
A. D.
Smith
,
E. M.
Warne
,
D.
Bellshaw
,
D. A.
Horke
,
M.
Tudorovskya
,
E.
Springate
,
A. J. H.
Jones
,
C.
Cacho
,
R. T.
Chapman
,
A.
Kirrander
, and
R. S.
Minns
, “
Mapping the complete reaction path of a complex photochemical reaction
,”
Phys. Rev. Lett.
120
,
183003
(
2018
).
3.
P.
Farmanara
,
V.
Stert
, and
W.
Radloff
,
J. Chem. Phys.
111
,
5338
(
1999
).
4.
T.
Horio
,
R.
Spesyvtsev
, and
T.
Suzuki
, “
Simultaneous generation of sub-20 fs deep and vacuum ultraviolet pulses in a single filamentation cell and application to time-resolved photoelectron imaging
,”
Opt. Express
21
,
22423
22428
(
2013
).
5.
R.
Spesyvtsev
,
T.
Horio
,
Y.-I.
Suzuki
, and
T.
Suzuki
,
J. Chem. Phys.
142
,
074308
(
2015
).
6.
M.
Brouard
,
E. K.
Campbell
,
R.
Cireasa
,
A. J.
Johnsen
, and
W.-H.
Yuen
, “
The ultraviolet photodissociation of CS2: The S(1D2) channel
,”
J. Chem. Phys.
136
,
044310
(
2012
).
7.
D.
Bellshaw
,
R. S.
Minns
, and
A.
Kirrander
, “
Correspondence between electronic structure calculations and simulations: Nonadiabatic dynamics in CS2
,”
Phys. Chem. Chem. Phys.
21
,
14226
14237
(
2019
).
8.
D.
Bellshaw
,
D. A.
Horke
,
A. D.
Smith
,
H. M.
Watts
,
E.
Jager
,
E.
Springate
,
O.
Alexander
,
C.
Cacho
,
R. T.
Chapman
,
A.
Kirrander
, and
R. S.
Minns
, “
Ab initio surface hopping and multiphoton ionisation study of the photodissociation dynamics of CS2
,”
Chem. Phys. Lett.
683
,
383
388
(
2017
), Ahmed Zewail (1946-2016) Commemoration Issue of Chemical Physics Letters.
9.
T. N.
Kitsopoulos
,
C. R.
Gebhardt
, and
T. P.
Rakitzis
, “
Photodissociation study of CS2 at 193 nm using slice imaging
,”
J. Chem. Phys.
115
,
9727
9732
(
2001
).
10.
T.
Horio
,
R.
Spesyvtsev
,
Y.
Furumido
, and
T.
Suzuki
,
J. Chem. Phys.
147
,
013932
(
2017
).
11.
I. M.
Waller
and
J. W.
Hepburn
, “
Photofragment spectroscopy of CS2 at 193 nm: Direct resolution of singlet and triplet channels
,”
J. Chem. Phys.
87
,
3261
3268
(
1987
).
12.
P.
Hockett
,
C. Z.
Bisgaard
,
O. J.
Clarkin
, and
A.
Stolow
,
Nat. Phys.
7
,
612
(
2011
).
13.
W. B.
Tzeng
,
H. M.
Yin
,
W. Y.
Leung
,
J. Y.
Luo
,
S.
Nourbakhsh
,
G. D.
Flesch
, and
C. Y.
Ng
, “
A 193 nm laser photofragmentation time-of-flight mass spectrometric study of CS2 and CS2 clusters
,”
J. Chem. Phys.
88
,
1658
1669
(
1988
).
14.
W. S.
McGivern
,
O.
Sorkhabi
,
A. H.
Rizvi
,
A. G.
Suits
, and
S. W.
North
,
J. Chem. Phys.
112
,
5301
5307
(
2000
).
15.
S. C.
Yang
,
A.
Freedman
,
M.
Kawasaki
, and
R.
Bersohn
, “
Energy distribution of the fragments produced by photodissociation of CS2 at 193 nm
,”
J. Chem. Phys.
72
,
4058
4062
(
1980
).
16.
M. C.
Addison
,
R. J.
Donovan
, and
C.
Fotakis
, “
Resonance fluorescence study of electronically excited sulphur atoms: Reactions of S(31 D2)
,”
Chem. Phys. Lett.
74
,
58
62
(
1980
).
17.
V. R.
McCrary
,
R.
Lu
,
D.
Zakheim
,
J. A.
Russell
,
J. B.
Halpern
, and
W. M.
Jackson
, “
Coaxial measurement of the translational energy distribution of CS produced in the laser photolysis of CS2 at 193 nm
,”
J. Chem. Phys.
83
,
3481
3490
(
1985
).
18.
M.
Barthel
,
R.
Flesch
,
E.
Rühl
, and
B. M.
McLaughlin
,
Phys. Rev. A
91
,
013406
(
2015
).
19.
D.
Xu
,
J.
Huang
, and
W. M.
Jackson
, “
Reinvestigation of CS2 dissociation at 193 nm by means of product state-selective vacuum ultraviolet laser ionization and velocity imaging
,”
J. Chem. Phys.
120
,
3051
3054
(
2004
).
20.
D.
Irimia
,
D.
Dobrikov
,
R.
Kortekaas
,
H.
Voet
,
D. A.
van den Ende
,
W. A.
Groen
, and
M. H. M.
Janssen
,
Rev. Sci. Instrum.
80
,
113303
(
2009
).
21.
L.
Zuin
,
F.
Innocenti
,
M. L.
Costa
,
A. A.
Dias
,
A.
Morris
,
A. C. S.
Paiva
,
S.
Stranges
,
J. B.
West
, and
J. M.
Dyke
, “
An initial investigation of S and SH with angle resolved photoelectron spectroscopy using synchrotron radiation
,”
Chem. Phys.
298
,
213
222
(
2004
).
22.
N.
Jonathan
,
A.
Morris
,
M.
Okuda
,
D. J.
Smith
, and
K. J.
Ross
, “
Photoelectron spectroscopy of transient species: The CS molecule
,”
Chem. Phys. Lett.
13
,
334
336
(
1972
).
23.
D. W.
Turner
,
Molecular Photoelectron Spectroscopy
, 1st ed. (
Wiley
,
1970
), ISBN: 047189320X.
24.
M. L.
Murillo-Sánchez
,
J.
González-Vázquez
,
M. E.
Corrales
,
R.
De Nalda
,
E.
Martínez-Núñez
,
A.
García-Vela
, and
L.
Bañares
,
J. Chem. Phys.
152
,
014304
(
2020
).
25.
D.
Townsend
,
H.
Satzger
,
T.
Ejdrup
,
A. M. D.
Lee
,
H.
Stapelfeldt
, and
A.
Stolow
,
J. Chem. Phys.
125
,
234302
(
2006
).
26.
R. J.
Hemley
,
D. G.
Leopold
,
J. L.
Roebber
, and
V.
Vaida
,
J. Chem. Phys.
79
,
5219
(
1983
).
You do not currently have access to this content.