Plasmon-enhanced coherent Raman scattering microscopy has reached single-molecule detection sensitivity. Due to the different driven fields, there are significant differences between a coherent Raman scattering process and its plasmon-enhanced derivative. The commonly accepted line shapes for coherent anti-Stokes Raman scattering and stimulated Raman scattering do not hold for the plasmon-enhanced condition. Here, we present a theoretical model that describes the spectral line shapes in plasmon-enhanced coherent anti-Stokes Raman scattering (PECARS). Experimentally, we measured PECARS and plasmon-enhanced stimulated Raman scattering (PESRS) spectra of 4-mercaptopyridine adsorbed on the self-assembled Au nanoparticle (NP) substrate and aggregated Au NP colloids. The PECARS spectra show a nondispersive line shape, while the PESRS spectra exhibit a dispersive line shape. PECARS shows a higher signal to noise ratio and a larger enhancement factor than PESRS from the same specimen. It is verified that the nonresonant background in PECARS originates from the photoluminescence of nanostructures. The decoupling of background and the vibrational resonance component results in the nondispersive line shape in PECARS. More local electric field enhancements are involved in the PECARS process than in PESRS, which results in a higher enhancement factor in PECARS. The current work provides new insight into the mechanism of plasmon-enhanced coherent Raman scattering and helps to optimize the experimental design for ultrasensitive chemical imaging.

1.
C. L.
Evans
,
E. O.
Potma
,
M.
Puoris’haag
,
D.
Côté
,
C. P.
Lin
, and
X. S.
Xie
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
16807
16812
(
2005
).
2.
B. G.
Saar
,
C. W.
Freudiger
,
J.
Reichman
,
C. M.
Stanley
,
G. R.
Holtom
, and
X. S.
Xie
,
Science
330
,
1368
1370
(
2010
).
3.
J.-X.
Cheng
and
X. S.
Xie
,
J. Phys. Chem. B
108
,
827
840
(
2004
).
4.
C. L.
Evans
and
X. S.
Xie
,
Annu. Rev. Anal. Chem.
1
,
883
909
(
2008
).
5.
C.
Zhang
,
D.
Zhang
, and
J.-X.
Cheng
,
Annu. Rev. Biomed. Eng.
17
,
415
445
(
2015
).
6.
C.-S.
Liao
and
J.-X.
Cheng
,
Annu. Rev. Anal. Chem.
9
,
69
93
(
2016
).
7.
F.
Hu
,
L.
Shi
, and
W.
Min
,
Nat. Methods
16
,
830
842
(
2019
).
8.
A.
Folick
,
W.
Min
, and
M. C.
Wang
,
Curr. Opin. Genet. Dev.
21
,
585
590
(
2011
).
9.
Y.
Shen
,
F.
Hu
, and
W.
Min
,
Annu. Rev. Biophys.
48
,
347
369
(
2019
).
10.
C. H.
Camp
, Jr.
and
M. T.
Cicerone
,
Nat. Photonics
9
,
295
305
(
2015
).
11.
J.-X.
Cheng
and
X. S.
Xie
,
Science
350
,
aaa8870
(
2015
).
12.
C. H.
Camp
, Jr.
,
Y. J.
Lee
,
J. M.
Heddleston
,
C. M.
Hartshorn
,
A. R. H.
Walker
,
J. N.
Rich
,
J. D.
Lathia
, and
M. T.
Cicerone
,
Nat. Photonics
8
,
627
634
(
2014
).
13.
F.-K.
Lu
,
S.
Basu
,
V.
Igras
,
M. P.
Hoang
,
M.
Ji
,
D.
Fu
,
G. R.
Holtom
,
V. A.
Neel
,
C. W.
Freudiger
,
D. E.
Fisher
, and
X. S.
Xie
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
11624
11629
(
2015
).
14.
X.
Chen
,
C.
Zhang
,
P.
Lin
,
K.-C.
Huang
,
J.
Liang
,
J.
Tian
, and
J.-X.
Cheng
,
Nat. Commun.
8
,
15117
(
2017
).
15.
J.
Li
,
S.
Condello
,
J.
Thomes-Pepin
,
X.
Ma
,
Y.
Xia
,
T. D.
Hurley
,
D.
Matei
, and
J.-X.
Cheng
,
Cell Stem Cell
20
,
303
314
(
2017
).
16.
D. A.
Orringer
,
B.
Pandian
,
Y. S.
Niknafs
,
T. C.
Hollon
,
J.
Boyle
,
S.
Lewis
,
M.
Garrard
,
S. L.
Hervey-Jumper
,
H. J.
Garton
,
C. O.
Maher
 et al,
Nat. Biomed. Eng.
1
,
0027
(
2017
).
17.
D.
Fu
,
J.
Zhou
,
W. S.
Zhu
,
P. W.
Manley
,
Y. K.
Wang
,
T.
Hood
,
A.
Wylie
, and
X. S.
Xie
,
Nat. Chem.
6
,
614
622
(
2014
).
18.
L.
Gong
,
W.
Zheng
,
Y.
Ma
, and
Z.
Huang
,
Nat. Photonics
14
,
115
122
(
2020
).
19.
M.
Zhang
,
W.
Hong
,
N. S.
Abutaleb
,
J.
Li
,
P. T.
Dong
,
C.
Zong
,
P.
Wang
,
M. N.
Seleem
, and
J. X.
Cheng
,
Adv. Sci.
7
,
2001452
(
2020
).
20.
L.
Wei
,
Z.
Chen
,
L.
Shi
,
R.
Long
,
A. V.
Anzalone
,
L.
Zhang
,
F.
Hu
,
R.
Yuste
,
V. W.
Cornish
, and
W.
Min
,
Nature
544
,
465
470
(
2017
).
21.
D.
Zhang
,
M. N.
Slipchenko
,
D. E.
Leaird
,
A. M.
Weiner
, and
J.-X.
Cheng
,
Opt. Express
21
,
13864
13874
(
2013
).
22.
T.-W.
Koo
,
S.
Chan
, and
A. A.
Berlin
,
Opt. Lett.
30
,
1024
1026
(
2005
).
23.
S.
Yampolsky
,
D. A.
Fishman
,
S.
Dey
,
E.
Hulkko
,
M.
Banik
,
E. O.
Potma
, and
V. A.
Apkarian
,
Nat. Photonics
8
,
650
656
(
2014
).
24.
Y.
Zhang
,
Y.-R.
Zhen
,
O.
Neumann
,
J. K.
Day
,
P.
Nordlander
, and
N. J.
Halas
,
Nat. Commun.
5
,
4424
(
2014
).
25.
C.
Zong
,
R.
Premasiri
,
H.
Lin
,
Y.
Huang
,
C.
Zhang
,
C.
Yang
,
B.
Ren
,
L. D.
Ziegler
, and
J.-X.
Cheng
,
Nat. Commun.
10
,
5318
(
2019
).
26.
A.
Fast
and
E. O.
Potma
,
Nanophotonics
8
,
991
1021
(
2019
).
27.
R. R.
Frontiera
,
A.-I.
Henry
,
N. L.
Gruenke
, and
R. P.
Van Duyne
,
J. Phys. Chem. Lett.
2
,
1199
1203
(
2011
).
28.
R. R.
Frontiera
,
N. L.
Gruenke
, and
R. P.
Van Duyne
,
Nano Lett.
12
,
5989
5994
(
2012
).
29.
C.
Zong
and
J.-X.
Cheng
,
Nanophotonics
10
,
617
625
(
2020
).
30.
M. O.
McAnally
,
J. M.
McMahon
,
R. P.
Van Duyne
, and
G. C.
Schatz
,
J. Chem. Phys.
145
,
094106
(
2016
).
31.
A.
Mandal
,
S.
Erramilli
, and
L. D.
Ziegler
,
J. Phys. Chem. C
120
,
20998
21006
(
2016
).
32.
X.
Hua
,
D. V.
Voronine
,
C. W.
Ballmann
,
A. M.
Sinyukov
,
A. V.
Sokolov
, and
M. O.
Scully
,
Phys. Rev. A
89
,
043841
(
2014
).
33.
D. V.
Voronine
,
A. M.
Sinyukov
,
X.
Hua
,
E.
Munusamy
,
G.
Ariunbold
,
A. V.
Sokolov
, and
M. O.
Scully
,
J. Mod. Opt.
62
,
90
96
(
2015
).
34.
K. T.
Crampton
,
A.
Zeytunyan
,
A. S.
Fast
,
F. T.
Ladani
,
A.
Alfonso-Garcia
,
M.
Banik
,
S.
Yampolsky
,
D. A.
Fishman
,
E. O.
Potma
, and
V. A.
Apkarian
,
J. Phys. Chem. C
120
,
20943
20953
(
2016
).
35.
L. E.
Buchanan
,
N. L.
Gruenke
,
M. O.
McAnally
,
B.
Negru
,
H. E.
Mayhew
,
V. A.
Apkarian
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Phys. Chem. Lett.
7
,
4629
4634
(
2016
).
36.
K. T.
Crampton
,
A.
Fast
,
E. O.
Potma
, and
V. A.
Apkarian
,
Nano Lett.
18
,
5791
5796
(
2018
).
37.
X.-S.
Zheng
,
P.
Hu
,
J.-H.
Zhong
,
C.
Zong
,
X.
Wang
,
B.-J.
Liu
, and
B.
Ren
,
J. Phys. Chem. C
118
,
3750
3757
(
2014
).
38.
X.-S.
Zheng
,
P.
Hu
,
Y.
Cui
,
C.
Zong
,
J.-M.
Feng
,
X.
Wang
, and
B.
Ren
,
Anal. Chem.
86
,
12250
12257
(
2014
).
39.
Z.-M.
Zhang
,
S.
Chen
, and
Y.-Z.
Liang
,
Analyst
135
,
1138
1146
(
2010
).
40.
C.
Steuwe
,
C. F.
Kaminski
,
J. J.
Baumberg
, and
S.
Mahajan
,
Nano Lett.
11
,
5339
5343
(
2011
).
41.
Y.
Jung
,
H.
Chen
,
L.
Tong
, and
J.-X.
Cheng
,
J. Phys. Chem. C
113
,
2657
2663
(
2009
).
42.
S.
Park
,
M.
Pelton
,
M.
Liu
,
P.
Guyot-Sionnest
, and
N. F.
Scherer
,
J. Phys. Chem. C
111
,
116
123
(
2007
).
43.
J.
Yang
,
Q.
Sun
,
K.
Ueno
,
X.
Shi
,
T.
Oshikiri
,
H.
Misawa
, and
Q.
Gong
,
Nat. Commun.
9
,
4585
(
2018
).
44.
G. V.
Hartland
,
Chem. Rev.
111
,
3858
3887
(
2011
).
You do not currently have access to this content.