The competition of short-ranged depletion attraction and long-ranged repulsion between colloidal particles in colloid–polymer mixtures leads to the formation of heterogeneous gel-like structures. Our special focus will be on the states where the colloids arrange in thin strands that span the whole system and that we will refer to as dilute gel networks. These states occur at low packing fractions for attractions that are stronger than those at both the binodal line of the equilibrium gas–liquid phase separation and the directed percolation transition line. By using Brownian dynamics simulations, we explore the formation, structure, and aging dynamics of dilute gel networks. The essential connections in a dilute gel network are determined by constructing reduced networks. We compare the observed properties to those of clumpy gels or cluster fluids. Our results demonstrate that both the structure and the (often slow) dynamics of the stable or meta-stable heterogeneous states in colloid–polymer mixtures possess distinct features on various length and time scales and thus are richly diverse.

1.
B. V.
Derjaguin
and
L.
Landau
, “
Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes
,”
Acta Physicochim. USSR
14
,
633
(
1941
).
2.
E. J.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
Amsterdam
,
1948
).
3.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
(
1954
).
4.
A.
Vrij
, “
Polymers at interfaces and interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
(
1976
).
5.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
6.
M.
Edelmann
and
R.
Roth
, “
Gyroid phase of fluids with spherically symmetric competing interactions
,”
Phys. Rev. E
93
,
062146
(
2016
).
7.
E. C.
Oğuz
,
A.
Mijailović
, and
M.
Schmiedeberg
, “
Self-assembly of complex structures in colloid-polymer mixtures
,”
Phys. Rev. E
98
,
052601
(
2018
).
8.
N. A. M.
Verhaegh
,
D.
Asnaghi
,
H. N. W.
Lekkerkerker
,
M.
Giglio
, and
L.
Cipelletti
, “
Transient gelation by spinodal decomposition in colloid-polymer mixtures
,”
Physica A
242
,
104
(
1997
).
9.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
(
2008
).
10.
D.
Richard
,
J.
Hallett
,
T.
Speck
, and
C. P.
Royall
, “
Coupling between criticality and gelation in ‘sticky’ spheres: A structural analysis
,”
Soft Matter
14
,
5554
(
2018
).
11.
D.
Richard
,
C. P.
Royall
, and
T.
Speck
, “
Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?
,”
J. Chem. Phys.
148
,
241101
(
2018
).
12.
J. H.
Cho
,
R.
Cerbino
, and
I.
Bischofberger
, “
Emergence of multiscale dynamics in colloidal gels
,”
Phys. Rev. Lett.
124
,
088005
(
2020
).
13.
A.
Zaccone
,
H.
Wu
, and
E.
Del Gado
, “
Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses
,”
Phys. Rev. Lett.
103
,
208301
(
2009
).
14.
A. J.
Archer
and
N. B.
Wilding
, “
Phase behavior of a fluid with competing attractive and repulsive interactions
,”
Phys. Rev. E
76
,
031501
(
2007
).
15.
J. C.
Fernandez Toledano
,
F.
Sciortino
, and
E.
Zaccarelli
, “
Colloidal systems with competing interactions: From an arrested repulsive cluster phase to a gel
,”
Soft Matter
5
,
2390
(
2009
).
16.
I.
Zhang
,
C. P.
Royall
,
M. A.
Faers
, and
P.
Bartlett
, “
Phase separation dynamics in colloid–polymer mixtures: The effect of interaction range
,”
Soft Matter
9
,
2076
(
2013
).
17.
E.
Mani
,
W.
Lechner
,
W. K.
Kegel
, and
P. G.
Bolhuis
, “
Equilibrium and non-equilibrium cluster phases in colloids with competing interactions
,”
Soft Matter
10
,
4479
(
2014
).
18.
M. E.
Helgeson
,
Y.
Gao
,
S. E.
Moran
,
J.
Lee
,
M.
Godfrin
,
A.
Tripathi
,
A.
Bose
, and
P. S.
Doyle
, “
Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels
,”
Soft Matter
10
,
3122
(
2014
).
19.
M.
Kohl
,
R. F.
Capellmann
,
M.
Laurati
,
S. U.
Egelhaaf
, and
M.
Schmiedeberg
, “
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
,”
Nat. Commun.
7
,
11817
(
2016
).
20.
J. M.
van Doorn
,
J.
Bronkhorst
,
R.
Higler
,
T.
van de Laar
, and
J.
Sprakel
, “
Linking particle dynamics to local connectivity in colloidal gels
,”
Phys. Rev. Lett.
118
,
188001
(
2017
).
21.
M.
Kohl
and
M.
Schmiedeberg
, “
Shear-induced slab-like domains in a directed percolated colloidal gel
,”
Eur. Phys. J. E
40
,
71
(
2017
).
22.
J.
Rouwhorst
,
C.
Ness
,
S.
Stoyanov
,
A.
Zaccone
, and
P.
Schall
, “
Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction
,”
Nat. Commun.
11
,
3558
(
2020
).
23.
J.
Rouwhorst
,
P.
Schall
,
C.
Ness
,
T.
Blijdenstein
, and
A.
Zaccone
, “
Nonequilibrium master kinetic equation modeling of colloidal gelation
,”
Phys. Rev. E
102
,
022602
(
2020
).
24.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
25.
E.
Del Gado
and
W.
Kob
, “
A microscopic model for colloidal gels with directional effective interactions: Network induced glassy dynamics
,”
Soft Matter
6
,
1547
1558
(
2010
).
26.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
, “
Patchy colloids: State of the art and perspectives
,”
Phys. Chem. Chem. Phys.
13
,
6397
6410
(
2011
).
27.
J. N.
Immink
,
J. J.
Erik Maris
,
P.
Schurtenberger
, and
J.
Stenhammar
, “
Using patchy particles to prevent local rearrangements in models of non-equilibrium colloidal gels
,”
Langmuir
36
(
1
),
419
425
(
2020
).
28.
L.
Milz
and
M.
Schmiedeberg
, “
Connecting the random organization transition and jamming within a unifying model system
,”
Phys. Rev. E
88
,
062308
(
2013
).
29.
M.
Maiti
and
M.
Schmiedeberg
, “
Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures
,”
Sci. Rep.
8
,
1837
(
2018
).
30.
I. M.
Zerón
,
C.
Vega
, and
A. L.
Benavides
, “
Continuous version of a square-well potential of variable range and its application in molecular dynamics simulations
,”
Mol. Phys.
116
(
21-22
),
3355
3365
(
2018
).
31.
V.
Sorichetti
,
V.
Hugouvieux
, and
W.
Kob
, “
Determining the mesh size of polymer solutions via the pore size distribution
,”
Macromolecules
53
(
7
),
2568
2581
(
2020
).
32.
S.
Torquato
,
B.
Lu
, and
J.
Rubinstein
, “
Nearest-neighbor distribution functions in many-body systems
,”
Phys. Rev. A
41
,
2059
(
1990
).
33.
S.
Torquato
and
M.
Avellaneda
, “
Diffusion and reaction in heterogeneous media: Pore size distribution, relaxation times, and mean survival time
,”
J. Chem. Phys.
95
,
6477
6489
(
1991
).
34.
S.
Torquato
, “
Nearest-neighbor statistics for packings of hard spheres and disks
,”
Phys. Rev. E
51
,
3170
(
1995
).
35.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer Science & Business Media
,
2013
).
36.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
New York
,
1990
).
37.
R. W.
Floyd
, “
Algorithm 97: Shortest path
,”
Commun. ACM
5
(
6
),
345
(
1962
).
38.
S.
Warshall
, “
A theorem on Boolean matrices
,”
J. ACM
9
(
1
),
11
12
(
1962
).
You do not currently have access to this content.