In order to better control the assembly of nanorods, knowledge of the pathways by which they form ordered structures is desirable. In this paper, we characterize crystal nucleation in suspensions of spherocylindrical rods with aspect ratio L/D = 2.3 in the presence of both small and large polymer depletants. Using a combination of Langevin dynamics and Monte Carlo simulations, together with biased sampling techniques, we show that the preferred pathway always involves the formation of monolayer assemblies irrespective of the volume fraction of the initial isotropic phase and the diameter of the depletants. This includes the previously neglected case of nucleation from the colloidal liquid phase and shows that the presence of depletion attraction can alter nucleation pathways even when the initial phase is dense.

1.
J. B.
Rivest
,
S. L.
Swisher
,
L.-K.
Fong
,
H.
Zheng
, and
A. P.
Alivisatos
, “
Assembled monolayer nanorod heterojunctions
,”
ACS Nano
5
,
3811
3816
(
2011
).
2.
L.
Vigderman
,
B. P.
Khanal
, and
E. R.
Zubarev
, “
Functional gold nanorods: Synthesis, self-assembly, and sensing applications
,”
Adv. Mater.
24
,
4811
4841
(
2012
).
3.
S.
Gupta
,
Q.
Zhang
,
T.
Emrick
, and
T. P.
Russell
, “
‘Self-corralling’ nanorods under an applied electric field
,”
Nano Lett.
6
,
2066
2069
(
2006
).
4.
F.
Wetz
,
K.
Soulantica
,
M.
Respaud
,
A.
Falqui
, and
B.
Chaudret
, “
Synthesis and magnetic properties of Co nanorod superlattices
,”
Mater. Sci. Eng. C
27
,
1162
1166
(
2007
).
5.
A. M.
Funston
,
C.
Novo
,
T. J.
Davis
, and
P.
Mulvaney
, “
Plasmon coupling of gold nanorods at short distances and in different geometries
,”
Nano Lett.
9
,
1651
1658
(
2009
).
6.
K.
Thorkelsson
,
P.
Bai
, and
T.
Xu
, “
Self-assembly and applications of anisotropic nanomaterials: A review
,”
Nano Today
10
,
48
66
(
2015
).
7.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
8.
C.
Querner
,
M. D.
Fischbein
,
P. A.
Heiney
, and
M.
Drndić
, “
Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics
,”
Adv. Mater.
20
,
2308
2314
(
2008
).
9.
J. L.
Baker
,
A.
Widmer-Cooper
,
M. F.
Toney
,
P. L.
Geissler
, and
A. P.
Alivisatos
, “
Device-scale perpendicular alignment of colloidal nanorods
,”
Nano Lett.
10
,
195
201
(
2010
).
10.
D.
Baranov
,
A.
Fiore
,
M.
van Huis
,
C.
Giannini
,
A.
Falqui
,
U.
Lafont
,
H.
Zandbergen
,
M.
Zanella
,
R.
Cingolani
, and
L.
Manna
, “
Assembly of colloidal semiconductor nanorods in solution by depletion attraction
,”
Nano Lett.
10
,
743
749
(
2010
).
11.
J.
Wood
,
P.
Airey
,
S.
Alam
,
M. A.
Modestino
,
R. A.
Segalman
, and
A.
Widmer-Cooper
, “
Phase behavior of nanorod assemblies in solutions of small and large polymer depletants
” (unpublished).
12.
S.
Vial
,
D.
Nykypanchuk
,
K. G.
Yager
,
A. V.
Tkachenko
, and
O.
Gang
, “
Linear mesostructures in DNA—Nanorod self-assembly
,”
ACS Nano
7
,
5437
5445
(
2013
).
13.
S.
Nakamura
,
H.
Mitomo
,
Y.
Sekizawa
,
T.
Higuchi
,
Y.
Matsuo
,
H.
Jinnai
, and
K.
Ijiro
, “
Strategy for finely aligned gold nanorod arrays using polymer brushes as a template
,”
Langmuir
36
,
3590
(
2020
).
14.
M. K.
Gupta
,
T.
König
,
R.
Near
,
D.
Nepal
,
L. F.
Drummy
,
S.
Biswas
,
S.
Naik
,
R. A.
Vaia
,
M. A.
El-Sayed
, and
V. V.
Tsukruk
, “
Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods
,”
Small
9
,
2979
2990
(
2013
).
15.
H.
Zhang
,
J.
Cadusch
,
C.
Kinnear
,
T.
James
,
A.
Roberts
, and
P.
Mulvaney
, “
Direct assembly of large area nanoparticle arrays
,”
ACS Nano
12
,
7529
7537
(
2018
).
16.
H.
Zhang
,
Y.
Liu
,
M. F. S.
Shahidan
,
C.
Kinnear
,
F.
Maasoumi
,
J.
Cadusch
,
E. M.
Akinoglu
,
T. D.
James
,
A.
Widmer‐Cooper
,
A.
Roberts
, and
P.
Mulvaney
, “
Direct assembly of vertically oriented, gold nanorod arrays
,”
Adv. Funct. Mater.
31
,
2006753
(
2021
).
17.
Q.
Liu
,
Y.
Cui
,
D.
Gardner
,
X.
Li
,
S.
He
, and
I. I.
Smalyukh
, “
Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications
,”
Nano Lett.
10
,
1347
1353
(
2010
).
18.
S.
Umadevi
,
X.
Feng
, and
T.
Hegmann
, “
Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods
,”
Adv. Funct. Mater.
23
,
1393
1403
(
2013
).
19.
J. A.
Lloyd
,
Y.
Liu
,
S. H.
Ng
,
T.
Thai
,
D. E.
Gómez
,
A.
Widmer-Cooper
, and
U.
Bach
, “
Self-assembly of spherical and rod-shaped nanoparticles with full positional control
,”
Nanoscale
11
,
22841
22848
(
2019
).
20.
J.
Buitenhuis
,
L. N.
Donselaar
,
P. A.
Buining
,
A.
Stroobants
, and
H. N. W.
Lekkerkerker
, “
Phase separation of mixtures of colloidal boehmite rods and flexible polymer
,”
J. Colloid Interface Sci.
175
,
46
56
(
1995
).
21.
Z.
Dogic
and
S.
Fraden
, “
Ordered phases of filamentous viruses
,”
Curr. Opin. Colloid Interface Sci.
11
,
47
55
(
2006
).
22.
M. A.
Modestino
,
E. R.
Chan
,
A.
Hexemer
,
J. J.
Urban
, and
R. A.
Segalman
, “
Controlling nanorod self-assembly in polymer thin films
,”
Macromolecules
44
,
7364
7371
(
2011
).
23.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
1023
(
2001
).
24.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P.
Pusey
, and
D.
Weitz
, “
Real-space imaging of nucleation and growth in colloidal crystallization
,”
Science
292
,
258
262
(
2001
).
25.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
, “
Self-assembly of colloidal nanocrystals: From intricate structures to functional materials
,”
Chem. Rev.
116
,
11220
11289
(
2016
).
26.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
,
7078
7116
(
2016
).
27.
D.
Richard
and
T.
Speck
, “
Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension
,”
J. Chem. Phys.
148
,
224102
(
2018
).
28.
Y.
Liu
and
A.
Widmer-Cooper
, “
A versatile simulation method for studying phase behavior and dynamics in colloidal rod and rod-polymer suspensions
,”
J. Chem. Phys.
150
,
244508
(
2019
).
29.
T.
Schilling
and
D.
Frenkel
, “
Self-poisoning of crystal nuclei in hard-rod liquids
,”
Phys. Rev. Lett.
92
,
085505
(
2004
).
30.
A.
Cuetos
,
R.
van Roij
, and
M.
Dijkstra
, “
Isotropic-to-nematic nucleation in suspensions of colloidal rods
,”
Soft Matter
4
,
757
(
2008
).
31.
A.
Cuetos
,
E.
Sanz
, and
M.
Dijkstra
, “
Can the isotropic-smectic transition of colloidal hard rods occur via nucleation and growth?
,”
Faraday Discuss.
144
,
253
269
(
2010
).
32.
R.
Ni
,
S.
Belli
,
R.
van Roij
, and
M.
Dijkstra
, “
Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods
,”
Phys. Rev. Lett.
105
,
088302
(
2010
).
33.
P. G.
Bolhuis
,
A.
Stroobants
,
D.
Frenkel
, and
H. N. W.
Lekkerkerker
, “
Numerical study of the phase behavior of rodlike colloids with attractive interactions
,”
J. Chem. Phys.
107
,
1551
(
1997
).
34.
S. V.
Savenko
and
M.
Dijkstra
, “
Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer
,”
J. Chem. Phys.
124
,
234902
(
2006
).
35.
S.
Jungblut
,
R.
Tuinier
,
K.
Binder
, and
T.
Schilling
, “
Depletion induced isotropic–isotropic phase separation in suspensions of rod-like colloids
,”
J. Chem. Phys.
127
,
244909
(
2007
).
36.
D.
Frenkel
and
T.
Schilling
, “
Smectic filaments in colloidal suspensions of rods
,”
Phys. Rev. E
66
,
041606
(
2002
).
37.
A.
Patti
and
M.
Dijkstra
, “
Do multilayer crystals nucleate in suspensions of colloidal rods?
,”
Phys. Rev. Lett.
102
,
128301
(
2009
).
38.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
39.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
40.
A.
Patti
and
A.
Cuetos
, “
Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: A comparative study
,”
Phys. Rev. E
86
,
011403
(
2012
).
41.
A.
Cuetos
and
A.
Patti
, “
Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions
,”
Phys. Rev. E
92
,
022302
(
2015
).
42.
E.
Sanz
and
D.
Marenduzzo
, “
Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids
,”
J. Chem. Phys.
132
,
194102
(
2010
).
43.
Y.
Liu
and
A.
Widmer-Cooper
, “
A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions
,”
J. Chem. Phys.
154
,
104120
(
2021
).
44.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
45.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
, “
Forward flux sampling for rare event simulations
,”
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
46.
A.
Haji-Akbari
and
P. G.
Debenedetti
, “
Direct calculation of ice homogeneous nucleation rate for a molecular model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
10588
(
2015
).
47.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Forward flux sampling-type schemes for simulating rare events: Efficiency analysis
,”
J. Chem. Phys.
124
,
194111
(
2006
).
48.
V.
Thapar
and
F. A.
Escobedo
, “
Simultaneous estimation of free energies and rates using forward flux sampling and mean first passage times
,”
J. Chem. Phys.
143
,
244113
(
2015
).
49.
P. R.
ten Wolde
and
D.
Frenkel
, “
Computer simulation study of gas–liquid nucleation in a Lennard-Jones system
,”
J. Chem. Phys.
109
,
9901
9918
(
1998
).
50.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
51.
A.
Cuetos
and
M.
Dijkstra
, “
Kinetic pathways for the isotropic-nematic phase transition in a system of colloidal hard rods: A simulation study
,”
Phys. Rev. Lett.
98
,
095701
(
2007
).

Supplementary Material

You do not currently have access to this content.