Entangled photon spectroscopy is a nascent field that has important implications for measurement and imaging across chemical, biology, and materials fields. Entangled photon spectroscopy potentially offers improved spatial and temporal-frequency resolutions, increased cross sections for multiphoton and nonlinear measurements, and new abilities in inducing or measuring quantum correlations. A critical step in enabling entangled photon spectroscopies is the creation of high-flux entangled sources that can use conventional detectors as well as provide redundancy for the losses in realistic samples. Here, we report a periodically poled, chirped, lithium tantalate platform that generates entangled photon pairs with ∼10−7 efficiency. For a near watt level diode laser, this results in a near μW-level flux. The single photon per mode limit that is necessary to maintain non-classical photon behavior is still satisfied by distributing this power over up to an octave-spanning bandwidth. The spectral–temporal photon correlations are observed via a Michelson-type interferometer that measures the broadband Hong–Ou–Mandel two-photon interference. A coherence time of 245 fs for a 10 nm bandwidth in the collinear case and a coherence time of 62 fs for a 125 nm bandwidth in the non-collinear case are measured using a CW pump laser and, essentially, collecting the full photon cone. We outline in detail the numerical methods used for designing and tailoring the entangled photons source, such as changing center wavelength or bandwidth, with the ultimate aim of increasing the availability of high-flux UV–Vis entangled photon sources in the optical spectroscopy community.

1.
D. C.
Burnham
and
D. L.
Weinberg
, “
Observation of simultaneity in parametric production of optical photon pairs
,”
Phys. Rev. Lett.
25
,
84
87
(
1970
).
2.
S.
Szoke
,
H.
Liu
,
B. P.
Hickam
,
M.
He
, and
S. K.
Cushing
, “
Entangled light–matter interactions and spectroscopy
,”
J. Mater. Chem. C
8
,
10732
10741
(
2020
).
3.
C. K.
Hong
,
Z. Y.
Ou
, and
L.
Mandel
, “
Measurement of subpicosecond time intervals between two photons by interference
,”
Phys. Rev. Lett.
59
,
2044
2046
(
1987
).
4.
V.
Mitev
,
L.
Balet
,
N.
Torcheboeuf
,
P.
Renevey
, and
D. L.
Boiko
, “
Discrimination of entangled photon pair from classical photons by de Broglie wavelength
,”
Sci. Rep.
10
,
7087
(
2020
).
5.
R.
Shimizu
,
K.
Edamatsu
, and
T.
Itoh
, “
Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion
,”
Phys. Rev. A
67
,
041805
(
2003
).
6.
A. F.
Abouraddy
,
B. E. A.
Saleh
,
A. V.
Sergienko
, and
M. C.
Teich
, “
Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal
,”
J. Opt. B: Quantum Semiclassical Opt.
3
,
S50
S54
(
2001
).
7.
J.
Javanainen
and
P. L.
Gould
, “
Linear intensity dependence of a two-photon transition rate
,”
Phys. Rev. A
41
,
5088
5091
(
1990
).
8.
B.
Dayan
,
A.
Pe’er
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Nonlinear interactions with an ultrahigh flux of broadband entangled photons
,”
Phys. Rev. Lett.
94
,
043602
(
2005
).
9.
J. P.
Villabona-Monsalve
,
R. K.
Burdick
, and
T.
Goodson
, “
Measurements of entangled two-photon absorption in organic molecules with CW-pumped type-I spontaneous parametric down-conversion
,”
J. Phys. Chem. C
124
,
24526
24532
(
2020
).
10.
M. G.
Raymer
,
A. H.
Marcus
,
J. R.
Widom
, and
D. L. P.
Vitullo
, “
Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS)
,”
J. Phys. Chem. B
117
,
15559
15575
(
2013
).
11.
D.
Tabakaev
,
M.
Montagnese
,
G.
Haack
,
L.
Bonacina
,
J.-P.
Wolf
,
H.
Zbinden
, and
R. T.
Thew
, “
Energy-time-entangled two-photon molecular absorption
,”
Phys. Rev. A
103
,
033701
(
2021
).
12.
T.
Li
,
F.
Li
,
C.
Altuzarra
,
A.
Classen
, and
G. S.
Agarwal
, “
Squeezed light induced two-photon absorption fluorescence of fluorescein biomarkers
,”
Appl. Phys. Lett.
116
,
254001
(
2020
).
13.
G.
Kang
,
K.
Nasiri Avanaki
,
M. A.
Mosquera
,
R. K.
Burdick
,
J. P.
Villabona-Monsalve
,
T.
Goodson
, and
G. C.
Schatz
, “
Efficient modeling of organic chromophores for entangled two-photon absorption
,”
J. Am. Chem. Soc.
142
,
10446
10458
(
2020
).
14.
A. N.
Boto
,
P.
Kok
,
D. S.
Abrams
,
S. L.
Braunstein
,
C. P.
Williams
, and
J. P.
Dowling
, “
Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit
,”
Phys. Rev. Lett.
85
,
2733
2736
(
2000
).
15.
O.
Steuernagel
, “
On the concentration behaviour of entangled photons
,”
J. Opt. B: Quantum Semiclassical Opt.
6
,
S606
S609
(
2004
).
16.
H.
Oka
, “
Selective two-photon excitation of a vibronic state by correlated photons
,”
J. Chem. Phys.
134
,
124313
(
2011
).
17.
H.
Oka
, “
Enhanced vibrational-mode-selective two-step excitation using ultrabroadband frequency-entangled photons
,”
Phys. Rev. A
97
,
063859
(
2018
).
18.
F.
Schlawin
,
K. E.
Dorfman
, and
S.
Mukamel
, “
Entangled two-photon absorption spectroscopy
,”
Acc. Chem. Res.
51
,
2207
2214
(
2018
).
19.
K. E.
Dorfman
,
F.
Schlawin
, and
S.
Mukamel
, “
Nonlinear optical signals and spectroscopy with quantum light
,”
Rev. Mod. Phys.
88
,
045008
(
2016
).
20.
J.-P. W.
MacLean
,
S.
Schwarz
, and
K. J.
Resch
, “
Reconstructing ultrafast energy-time-entangled two-photon pulses
,”
Phys. Rev. A
100
,
033834
(
2019
).
21.
M. B.
Nasr
,
G. D.
Giuseppe
,
B. E. A.
Saleh
,
A. V.
Sergienko
, and
M. C.
Teich
, “
Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down conversion
,”
Opt. Commun.
246
,
521
528
(
2005
).
22.
P. G.
Kwiat
,
K.
Mattle
,
H.
Weinfurter
,
A.
Zeilinger
,
A. V.
Sergienko
, and
Y.
Shih
, “
New high-intensity source of polarization-entangled photon pairs
,”
Phys. Rev. Lett.
75
,
4337
4341
(
1995
).
23.
S.
Friberg
,
C. K.
Hong
, and
L.
Mandel
, “
Measurement of time delays in the parametric production of photon pairs
,”
Phys. Rev. Lett.
54
,
2011
2013
(
1985
).
24.
P. G.
Kwiat
,
E.
Waks
,
A. G.
White
,
I.
Appelbaum
, and
P. H.
Eberhard
, “
Ultrabright source of polarization-entangled photons
,”
Phys. Rev. A
60
,
R773
R776
(
1999
).
25.
S.
Karan
,
S.
Aarav
,
H.
Bharadhwaj
,
L.
Taneja
,
A.
De
,
G.
Kulkarni
,
N.
Meher
, and
A. K.
Jha
, “
Phase matching in beta-barium borate crystals for spontaneous parametric down-conversion
,”
J. Opt.
22
,
083501
(
2020
).
26.
D. N.
Nikogosyan
, “
Beta barium borate (BBO)
,”
Appl. Phys. A
52
,
359
368
(
1991
).
27.
J. E.
Midwinter
and
J.
Warner
, “
The effects of phase matching method and of crystal symmetry on the polar dependence of third-order non-linear optical polarization
,”
Br. J. Appl. Phys.
16
,
1667
1674
(
1965
).
28.
O.
Roslyak
and
S.
Mukamel
, “
Multidimensional pump-probe spectroscopy with entangled twin-photon states
,”
Phys. Rev. A
79
,
63409
(
2009
).
29.
S.
Lerch
and
A.
Stefanov
, “
Experimental requirements for entangled two-photon spectroscopy
,” arXiv:2103.10079 (
2021
).
30.
S.
Wang
,
V.
Pasiskevicius
,
J.
Hellström
,
F.
Laurell
, and
H.
Karlsson
, “
First-order type II quasi-phase-matched UV generation in periodically poled KTP
,”
Opt. Lett.
24
,
978
980
(
1999
).
31.
N. E.
Yu
,
J. H.
Ro
,
M.
Cha
,
S.
Kurimura
, and
T.
Taira
, “
Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band
,”
Opt. Lett.
27
,
1046
1048
(
2002
).
32.
J.
Lin
,
N.
Yao
,
Z.
Hao
,
J.
Zhang
,
W.
Mao
,
M.
Wang
,
W.
Chu
,
R.
Wu
,
Z.
Fang
,
L.
Qiao
,
W.
Fang
,
F.
Bo
, and
Y.
Cheng
, “
Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator
,”
Phys. Rev. Lett.
122
,
173903
(
2019
).
33.
J.
Chen
,
A. J.
Pearlman
,
A.
Ling
,
J.
Fan
, and
A. L.
Migdall
, “
A versatile waveguide source of photon pairs for chip-scale quantum information processing
,”
Opt. Express
17
,
6727
6740
(
2009
).
34.
M.
Bock
,
A.
Lenhard
,
C.
Chunnilall
, and
C.
Becher
, “
Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide
,”
Opt. Express
24
,
23992
24001
(
2016
).
35.
B.-S.
Shi
and
A.
Tomita
, “
Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate
,”
J. Opt. Soc. Am. B
21
,
2081
2084
(
2004
).
36.
J. A.
Armstrong
,
N.
Bloembergen
,
J.
Ducuing
, and
P. S.
Pershan
, “
Interactions between light waves in a nonlinear dielectric
,”
Phys. Rev.
127
,
1918
1939
(
1962
).
37.
S.
Tanzilli
,
H.
De Riedmatten
,
W.
Tittel
,
H.
Zbinden
,
P.
Baldi
,
M.
De Micheli
,
D. B.
Ostrowsky
, and
N.
Gisin
, “
Highly efficient photon-pair source using periodically poled lithium niobate waveguide
,”
Electron. Lett.
37
,
26
28
(
2001
).
38.
M. B.
Nasr
,
S.
Carrasco
,
B. E. A.
Saleh
,
A. V.
Sergienko
,
M. C.
Teich
,
J. P.
Torres
,
L.
Torner
,
D. S.
Hum
, and
M. M.
Fejer
, “
Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion
,”
Phys. Rev. Lett.
100
,
183601
(
2008
).
39.
A.
Pe’er
,
B.
Dayan
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Temporal shaping of entangled photons
,”
Phys. Rev. Lett.
94
,
073601
(
2005
).
40.
Z. Y.
Ou
and
Y. J.
Lu
, “
Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons
,”
Phys. Rev. Lett.
83
,
2556
2559
(
1999
).
41.
R. H.
Hadfield
, “
Single-photon detectors for optical quantum information applications
,”
Nat. Photonics
3
,
696
705
(
2009
).
42.
S.
Lerch
and
A.
Stefanov
, “
Observing the transition from quantum to classical energy correlations with photon pairs
,”
Commun. Phys.
1
,
26
(
2018
).
43.
G. M.
Zverev
,
E. A.
Levchuk
,
V. A.
Pashkov
, and
Y. D.
Poryadin
, “
Laser-radiation-induced damage to the surface of lithium niobate and tantalate single crystals
,”
Sov. J. Quantum Electron.
2
,
167
169
(
1972
).
44.
V. A.
Antonov
,
P. A.
Arsenev
,
I. G.
Linda
, and
V. L.
Farstendiker
, “
Colour centres in single crystals of lithium tantalate
,”
Phys. Status Solidi A
28
,
673
676
(
1975
).
45.
J.-P.
Meyn
and
M. M.
Fejer
, “
Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate
,”
Opt. Lett.
22
,
1214
1216
(
1997
).
46.
D.
Lopez-Mago
and
L.
Novotny
, “
Coherence measurements with the two-photon Michelson interferometer
,”
Phys. Rev. A
86
,
023820
(
2012
).
47.
D. N.
Klyshko
,
A. N.
Penin
, and
B. F.
Polkovnikov
, “
Parametric luminescence and light scattering by polaritons
,”
JETP Lett.
11
,
11
14
(
1970
).
48.
R.
Boyd
and
D.
Prato
,
Nonlinear Optics
, 3rd ed. (
Elsevier Science
,
2008
).
49.
M. M.
Fejer
,
G. A.
Magel
,
D. H.
Jundt
, and
R. L.
Byer
, “
Quasi-phase-matched second harmonic generation: Tuning and tolerances
,”
IEEE J. Quantum Electron.
28
,
2631
2654
(
1992
).
50.
K.
Moutzouris
,
G.
Hloupis
,
I.
Stavrakas
,
D.
Triantis
, and
M.-H.
Chou
, “
Temperature-dependent visible to near-infrared optical properties of 8 mol. % Mg-doped lithium tantalate
,”
Opt. Mater. Express
1
,
458
465
(
2011
).
51.
G.
Di Giuseppe
,
M.
Atatüre
,
M. D.
Shaw
,
A. V.
Sergienko
,
B. E. A.
Saleh
, and
M. C.
Teich
, “
Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity
,”
Phys. Rev. A
66
,
013801
(
2002
).
52.
A. V.
Burlakov
,
M. V.
Chekhova
,
D. N.
Klyshko
,
S. P.
Kulik
,
A. N.
Penin
,
Y. H.
Shih
, and
D. V.
Strekalov
, “
Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions
,”
Phys. Rev. A
56
,
3214
3225
(
1997
).
53.
A. M.
Brańczyk
,
A.
Fedrizzi
,
T. M.
Stace
,
T. C.
Ralph
, and
A. G.
White
, “
Engineered optical nonlinearity for quantum light sources
,”
Opt. Express
19
,
55
65
(
2011
).
54.
M.
Reichert
,
H.
Defienne
, and
J. W.
Fleischer
, “
Massively parallel coincidence counting of high-dimensional entangled states
,”
Sci. Rep.
8
,
7925
(
2018
).
55.
Y.
Zhang
,
D.
England
,
A.
Nomerotski
,
P.
Svihra
,
S.
Ferrante
,
P.
Hockett
, and
B.
Sussman
, “
Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements
,”
Phys. Rev. A
101
,
053808
(
2020
).
56.
B.
Bessire
,
C.
Bernhard
,
T.
Feurer
, and
A.
Stefanov
, “
Versatile shaper-assisted discretization of energy–time entangled photons
,”
New J. Phys.
16
,
033017
(
2014
).

Supplementary Material

You do not currently have access to this content.