Nonorthogonal approaches to electronic structure methods have recently received renewed attention, with the hope that new forms of nonorthogonal wavefunction Ansätze may circumvent the computational bottleneck of orthogonal-based methods. The basis in which nonorthogonal configuration interaction is performed defines the compactness of the wavefunction description and hence the efficiency of the method. Within a molecular orbital approach, nonorthogonal configuration interaction is defined by a “different orbitals for different configurations” picture, with different methods being defined by their choice of determinant basis functions. However, identification of a suitable determinant basis is complicated, in practice, by (i) exponential scaling of the determinant space from which a suitable basis must be extracted, (ii) possible linear dependencies in the determinant basis, and (iii) inconsistent behavior in the determinant basis, such as disappearing or coalescing solutions, as a result of external perturbations, such as geometry change. An approach that avoids the aforementioned issues is to allow for basis determinant optimization starting from an arbitrarily constructed initial determinant set. In this work, we derive the equations required for performing such an optimization, extending previous work by accounting for changes in the orthogonality level (defined as the dimension of the orbital overlap kernel between two determinants) as a result of orbital perturbations. The performance of the resulting wavefunction for studying avoided crossings and conical intersections where strong correlation plays an important role is examined.

1.
P. C.
Hiberty
and
S.
Shaik
,
J. Comput. Chem.
28
,
137
(
2007
).
2.
P.
Su
,
S.
Shaik
, and
P. C.
Hiberty
,
Chem. Rev.
111
,
7557
(
2011
).
3.
C.
Coulson
and
M. I.
Fischer
,
Philos. Mag.
40
,
386
(
1949
).
4.
H.
Fukutome
,
Prog. Theor. Phys.
80
,
417
(
1988
).
5.
R.
Broer
and
W. C.
Nieuwpoort
,
Theor. Chim. Acta
73
,
405
(
1988
).
6.
A.
Ikawa
,
S.
Yamamoto
, and
H.
Fukutome
,
J. Phys. Soc. Jpn.
62
,
1653
(
1993
).
7.
A. J. W.
Thom
and
M.
Head-Gordon
,
J. Chem. Phys.
131
,
124113
(
2009
).
8.
C. A.
Jiménez-Hoyos
,
T. M.
Henderson
,
T.
Tsuchimochi
, and
G. E.
Scuseria
,
J. Chem. Phys.
136
,
164109
(
2012
).
9.
H. G.
Hiscock
and
A. J. W.
Thom
,
J. Chem. Theory Comput.
10
,
4795
(
2014
).
10.
J.
Nite
and
C. A.
Jiménez-Hoyos
,
J. Chem. Theory Comput.
15
,
5343
(
2019
).
11.
H. G. A.
Burton
and
A. J. W.
Thom
,
J. Chem. Theory Comput.
16
,
5586
(
2020
).
12.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
,
J. Phys. Chem. A
112
,
13164
(
2008
).
13.
G. M. J.
Barca
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
,
J. Chem. Phys.
141
,
111104
(
2014
).
14.
G. M. J.
Barca
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
,
J. Chem. Theory Comput.
14
,
1501
(
2018
).
15.
E. M.
Kempfer-Robertson
,
T. D.
Pike
, and
L. M.
Thompson
,
J. Chem. Phys.
153
,
074103
(
2020
).
16.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
17.
J.-P.
Blaizot
and
G.
Ripka
,
Quantum Theory of Finite Systems
(
MIT Press
,
Cambridge, MA
,
1986
).
18.
R.
Broer
,
L.
Hozoi
, and
W. C.
Nieuwpoort
,
Mol. Phys.
101
,
233
(
2003
).
19.
R. K.
Kathir
,
C.
de Graaf
,
R.
Broer
, and
R. W. A.
Havenith
,
J. Chem. Theory Comput.
16
,
2941
(
2020
).
20.
A.
Igawa
and
H.
Fukutome
,
Prog. Theor. Phys.
80
,
611
(
1988
).
21.
K.
Kowalski
and
K.
Jankowski
,
Phys. Rev. Lett.
81
,
1195
(
1998
).
22.
A. J. W.
Thom
and
M.
Head-Gordon
,
Phys. Rev. Lett.
101
,
193001
(
2008
).
23.
L. M.
Thompson
,
J. Chem. Phys.
149
,
194106
(
2018
).
24.
X.
Dong
,
A. D.
Mahler
,
E. M.
Kempfer-Robertson
, and
L. M.
Thompson
,
J. Chem. Theory Comput.
16
,
5635
(
2020
).
25.
H. G. A.
Burton
and
A. J. W.
Thom
,
J. Chem. Theory Comput.
12
,
167
(
2016
).
26.
H. G. A.
Burton
,
M.
Gross
, and
A. J. W.
Thom
,
J. Chem. Theory Comput.
14
,
607
(
2018
).
27.
T.
Papadopoulo
and
M. I. A.
Lourakis
,
Computer Vision - ECCV 2000
, 2nd ed. (
Springer Berlin Heidelberg
,
2003
), pp.
554
570
.
28.
K. A.
O’Neil
,
SIAM J. Matrix Anal. Appl.
27
,
459
(
2005
).
29.
L. N.
Trefethen
,
Numerical Linear Algebra
(
SIAM
,
Philadelphia, PA
,
1997
).
30.
L.
Schwartz
,
Theories des Distributions
(
Hermann and Cie
,
Paris, France
,
1957
).
31.
D. S.
Jones
,
The Theory of Generalized Functions
(
Cambridge University Press
,
Cambridge, UK
,
1982
).
33.
R. T.
Rockafellar
,
Convex Analysis
(
Princeton University Press
,
Princeton, NJ
,
1970
).
34.
L. M.
Thompson
,
X.
Sheng
,
A.
Mahler
,
D.
Mullally
, and
H. P.
Hratchian
(
2020
). “
MQCpack 20.7
,” Zenodo.
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
36.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
 III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, Molpro, version 2019.2,
Cardiff, UK
,
2019
.
37.
S.
Battaglia
and
R.
Lindh
,
J. Chem. Theory Comput.
16
,
1555
(
2020
).
38.
A. J. C.
Varandas
,
J. Chem. Phys.
131
,
124128
(
2009
).
39.
J. W.
Snyder
and
D. A.
Mazziotti
,
J. Phys. Chem. A
115
,
14120
(
2011
).
40.
B.
Kaduk
and
T.
van Voorhis
,
J. Chem. Phys.
133
,
061102
(
2010
).
41.
R. A.
Horn
,
N. H.
Rhee
, and
W.
So
,
Linear Algebra Appl.
270
,
29
(
1998
).
42.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
2012
).
You do not currently have access to this content.