The composition-dependent change in the work-function (WF) of binary silver–potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag–K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag–K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV—below the value of pure K. In the jellium modeling, considered for Ag–K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values.

1.
I.
Langmuir
,
J. Am. Chem. Soc.
54
,
2798
(
1932
).
2.
V. M.
Gavrilyuk
,
A. G.
Naumovets
, and
A. G.
Fedorus
,
Sov. Phys. JETP
24
,
899
(
1967
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/24/5/p899?a=list.
3.
L. W.
Swanson
and
R. W.
Strayer
,
J. Chem. Phys.
48
,
2421
(
1968
).
4.
A. G.
Fedorus
and
A. G.
Naumovets
,
Surf. Sci.
21
,
426
(
1970
).
5.
6.
K. F.
Wojciechowski
,
Surf. Sci.
55
,
246
(
1976
).
7.
N. D.
Lang
and
A. R.
Williams
,
Phys. Rev. Lett.
34
,
531
(
1975
).
8.
10.
P. M.
Blass
,
X.-L.
Zhou
, and
J. M.
White
,
Surf. Sci.
215
,
74
(
1989
).
11.
R. D.
Diehl
and
R.
McGrath
,
Surf. Sci. Rep.
23
,
43
(
1996
).
12.
R. D.
Diehl
and
R.
McGrath
,
J. Phys.: Condens. Matter
9
,
951
(
1997
).
13.
G. S.
Leatherman
,
R. D.
Diehl
,
P.
Kaukasoina
, and
M.
Lindroos
,
Phys. Rev. B
53
,
10254
(
1996
).
14.
R.
Döhl-Oelze
,
E. M.
Stuve
, and
J. K.
Sass
,
Solid State Commun.
57
,
323
(
1986
).
15.
M.
Okada
,
H.
Tochihara
, and
Y.
Murata
,
Surf. Sci.
245
,
380
(
1991
).
16.
A.
Neumann
,
S. L. M.
Schroeder
, and
K.
Christmann
,
Phys. Rev. B
51
,
17007
(
1995
).
17.
S.
Modesti
,
C. T.
Chen
,
Y.
Ma
,
G.
Meigs
,
P.
Rudolf
, and
F.
Sette
,
Phys. Rev. B
42
,
5381
(
1990
).
18.
D. M.
Riffe
,
G. K.
Wertheim
, and
P. H.
Citrin
,
Phys. Rev. Lett.
64
,
571
(
1990
).
19.
20.
E.
Wimmer
,
A. J.
Freeman
,
J. R.
Hiskes
, and
A. M.
Karo
,
Phys. Rev. B
28
,
3074
(
1983
).
21.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. Lett.
71
,
577
(
1993
).
22.
C.
Stampfl
and
M.
Scheffler
,
Surf. Rev. Lett.
02
,
317
(
1995
).
23.
24.
R. P. Nielsen and J. H. La Rochelle, U.S. patent US-3962136-A (8 June 1976); U.S. patent US 4,010,115 A (1 March 1977); U.S. patent US-4012425-A (15 March 1977).
25.
D.
Briggs
,
R. A.
Marbrow
, and
R. M.
Lambert
,
Surf. Sci.
65
,
314
(
1977
).
26.
M.
Kitson
and
R. M.
Lambert
,
Surf. Sci.
110
,
205
(
1981
).
27.
B.
Hodnett
,
Heterogeneous Catalytic Oxidation
(
John Wiley and Sons Ltd.
,
Chichester, UK
,
2000
).
28.
M.
Kiskinova
,
G.
Pirug
, and
H. P.
Bonzel
,
Surf. Sci.
133
,
321
(
1983
).
29.
T.
Solomun
,
H.
Baumgaertel
, and
K.
Christmann
,
J. Phys. Chem.
95
,
10041
(
1991
).
30.
N. D.
Spencer
and
R. M.
Lambert
,
Chem. Phys. Lett.
83
,
388
(
1981
).
31.
M. R.
Kitson
and
R. M.
Lambert
,
Surf. Sci.
109
,
60
(
1981
).
32.
R. B.
Grant
and
R. M.
Lambert
,
Langmuir
1
,
29
(
1985
).
33.
J. N.
Andersen
,
M.
Qvarford
,
R.
Nyholm
,
J. F.
van Acker
, and
E.
Lundgren
,
Phys. Rev. Lett.
68
,
94
(
1992
).
34.
S. V.
Christensen
,
J.
Nerlov
,
K.
Nielsen
,
J.
Burchhardt
,
M. M.
Nielsen
, and
D. L.
Adams
,
Phys. Rev. Lett.
76
,
1892
(
1996
).
35.
J.
Burchhardt
,
M. M.
Nielsen
,
D. L.
Adams
,
E.
Lundgren
,
J. N.
Andersen
,
C.
Stampfl
,
M.
Scheffler
,
A.
Schmalz
,
S.
Aminpirooz
, and
J.
Haase
,
Phys. Rev. Lett.
74
,
1617
(
1995
).
36.
M.
Hansen
,
Constitution of Binary Alloys
(
McGraw-Hill
,
London
,
1958
).
37.
W.
Ekardt
,
Phys. Rev. Lett.
52
,
1925
(
1984
).
38.
39.
B.
von Issendorff
and
O.
Cheshnovsky
,
Annu. Rev. Phys. Chem.
56
,
549
(
2005
).
40.
K.
Jänkälä
,
M.-H.
Mikkelä
, and
M.
Huttula
,
J. Phys. B: At., Mol. Opt. Phys.
44
,
105101
(
2011
).
41.
J. S.
Kim
,
B.
Lägel
,
E.
Moons
,
N.
Johansson
,
I. D.
Baikie
,
W. R.
Salaneck
,
R. H.
Friend
, and
F.
Cacialli
,
Synth. Met.
111-112
,
311
(
2000
).
42.
M. G.
Helander
,
M. T.
Greiner
,
Z. B.
Wang
, and
Z. H.
Lu
,
Appl. Surf. Sci.
256
,
2602
(
2010
).
43.
M.
Tchaplyguine
,
G.
Öhrwall
, and
O.
Björneholm
, “
Photoelectron spectroscopy of free clusters
,” in
Handbook of Nanophysics
, edited by
K.
Sattler
(
Taylor & Francis
,
2011
).
44.
M.
Tchaplyguine
,
M.-H.
Mikkelä
, and
O.
Björneholm
, “
Multicomponent nanoparticles for novel technologies
,” in
21st Century Nanoscience—A Handbook
, edited by
K.
Sattler
(
Taylor & Francis
,
2020
).
45.
M.
Tchaplyguine
,
S.
Peredkov
,
H.
Svensson
,
J.
Schulz
,
G.
Öhrwall
,
M.
Lundwall
,
T.
Rander
,
A.
Lindblad
,
H.
Bergersen
,
S.
Svensson
 et al.,
Rev. Sci. Instrum.
77
,
033106
(
2006
).
46.
B.
Shirinzadeh
and
C. C.
Wang
,
Appl. Opt.
22
,
3265
(
1983
).
47.
M.-H.
Mikkelä
,
M.
Tchaplyguine
,
K.
Jänkälä
,
T.
Andersson
,
C.
Zhang
,
O.
Björneholm
, and
M.
Huttula
,
Eur. Phys. J. D
64
,
347
(
2011
).
48.
L.
Partanen
,
M.-H.
Mikkelä
,
M.
Huttula
,
M.
Tchaplyguine
,
C.
Zhang
,
T.
Andersson
, and
O.
Björneholm
,
J. Chem. Phys.
138
,
044301
(
2013
).
49.
T.
Andersson
,
C.
Zhang
,
O.
Björneholm
,
M.-H.
Mikkelä
,
K.
Jänkälä
,
D.
Anin
,
S.
Urpelainen
,
M.
Huttula
, and
M.
Tchaplyguine
,
J. Phys. B: At., Mol. Opt. Phys.
50
,
015102
(
2017
).
50.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
1
155
(
1985
).
51.
M.
Tchaplyguine
,
C.
Zhang
,
T.
Andersson
, and
O.
Björneholm
,
Chem. Phys. Lett.
600
,
96
(
2014
).
52.
T.
Andersson
,
C.
Zhang
,
A.
Rosso
,
I.
Bradeanu
,
S.
Legendre
,
S. E.
Canton
,
M.
Tchaplyguine
,
G.
Öhrwall
,
S. L.
Sorensen
,
S.
Svensson
 et al.,
J. Chem. Phys.
134
,
094511
(
2011
).
53.
See http://physics.nist.gov/PhysRefData/ASD/ for NIST tables of atomic states.
54.
D. E.
Eastman
,
Phys. Rev. B
2
,
1
2
(
1970
).
55.
C.
Nordling
and
J.
Österman
,
Physics Handbook
(
Chartwell-Bratt
,
1980
).
56.
D. M.
Wood
,
Phys. Rev. Lett.
46
,
749
(
1981
).
57.
C. W.
Kim
,
J. C.
Villagrán
,
U.
Even
, and
J. C.
Thompson
,
J. Chem. Phys.
94
,
3974
(
1991
).
58.
K. J.
Taylor
,
C. L.
Pettiette‐Hall
,
O.
Cheshnovsky
, and
R. E.
Smalley
,
J. Chem. Phys.
96
,
3319
(
1992
).
59.
G.
Alameddin
,
J.
Hunter
,
D.
Cameron
, and
M. M.
Kappes
,
Chem. Phys. Lett.
192
,
122
(
1992
).
60.
L.
Zhou
and
M. R.
Zachariah
,
Chem. Phys. Lett.
525-526
,
77
(
2012
).
61.
S.
Peredkov
,
J.
Schulz
,
A.
Rosso
 et al.,
Phys. Rev. B
75
,
235407
(
2007
).
62.
G. K.
Wertheim
,
Phys. Rev. B
36
,
4432
(
1987
).
63.
M.
Schick
,
G.
Ceballos
,
Th.
Pelzer
,
J.
Schäfer
,
G.
Rangelov
,
J.
Stober
, and
K.
Wandelt
,
J. Vac. Sci. Technol. A
12
,
1795
(
1994
).
64.
M.
Tchaplyguine
,
S.
Legendre
,
A.
Rosso
,
I.
Bradeanu
,
G.
Öhrwall
,
S. E.
Canton
,
T.
Andersson
,
S.
Svensson
,
N.
Mårtensson
, and
O.
Björneholm
,
Phys. Rev. B
80
,
033405
(
2009
).
65.
M.
Tchaplyguine
,
T.
Andersson
,
C.
Zhang
, and
O.
Björneholm
,
J. Chem. Phys.
138
,
104303
(
2013
).
66.
K.
Jänkälä
,
M.
Tchaplyguine
,
M.-H.
Mikkelä
,
O.
Björneholm
, and
M.
Huttula
,
Phys. Rev. Lett.
107
,
183401
(
2011
).
67.
P.-G.
Reinhard
and
E.
Suraud
,
Introduction to Cluster Dynamics
(
John Wiley & Sons
,
2003
).
68.
N. D.
Lang
, in
Solid State Physics
, edited by
F.
Seitz
,
D.
Turnbull
, and
H.
Ehrenreich
(
Academic Press
,
New York
,
1973
), Vol. 28, p.
225
.
69.
E.
Engel
and
J. P.
Perdew
,
Phys. Rev. B
43
,
1331
(
1991
).
70.
M.
Seidl
and
J. P.
Perdew
,
Phys. Rev. B
50
,
5744
(
1994
).
71.
G.
Ertl
and
J.
Küppers
,
Low Energy Electrons and Surface Chemistry
(
VCH Verlagsgellschaft
,
Weinheim, Germany
,
1985
).
72.
G.
Pirug
,
H. P.
Bonzel
, and
G.
Brodén
,
Surf. Sci.
122
,
1
(
1982
).
73.
L.
Surnev
and
M.
Tikhov
,
Surf. Sci.
85
,
413
(
1979
).
74.
C.
Argile
and
G. E.
Rhead
,
Surf. Sci.
203
,
175
(
1988
).
You do not currently have access to this content.