Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward–backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei—a result that is in perfect accordance with the principle of the indistinguishability of identical particles.

1.
3.
S. A.
Rice
and
M.
Zhao
,
Optical Control of Molecular Dynamics
(
Wiley
,
New York
,
2000
).
4.
P. W.
Brumer
and
M.
Shapiro
,
Quantum Control of Molecular Processes
(
Wiley
,
Weinheim
,
2012
).
5.
P. B.
Corkum
and
F.
Krausz
,
Nat. Phys.
3
,
381
(
2007
).
6.
F.
Krausz
and
M.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
7.
F.
Lépine
,
M. Y.
Ivanov
, and
M. J. J.
Vrakking
,
Nat. Photonics
8
,
195
(
2014
).
8.
M.
Nisoli
,
P.
Decleva
,
F.
Calegari
,
A.
Palacios
, and
F.
Martín
,
Chem. Rev.
117
,
10760
(
2017
).
9.
P.
Saalfrank
,
F.
Bedurke
,
C.
Heide
,
T.
Klamroth
,
S.
Klinkusch
,
P.
Krause
,
M.
Nest
, and
J. C.
Tremblay
,
Adv. Quantum Chem.
81
,
15
(
2020
).
10.
J.
Itatani
 et al,
Nature
432
,
867
(
2004
).
11.
F.
Remacle
and
R. D.
Levine
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
6793
(
2006
).
12.
A. I.
Kuleff
and
L. S.
Cederbaum
,
Chem. Phys.
338
,
320
(
2007
).
13.
C. I.
Blaga
 et al,
Nature
483
,
194
(
2012
).
14.
F.
Calegari
 et al,
Science
346
,
336
(
2014
).
15.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules
(
Van Nostrand Reinhold
,
Princeton, NJ
,
1945
).
16.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa
,
1998
).
17.
P. R.
Bunker
and
P.
Jensen
,
Fundamentals of Molecular Symmetry
(
IOP Ltd.
,
Bristol
,
2005
).
18.
R.
Feynmann
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Boston
,
1964
).
19.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics
(
Wiley-VCH
,
Weinheim
,
1977
).
20.
A. V.
Davis
,
R.
Wester
,
A. E.
Bragg
, and
D. M.
Neumark
,
J. Chem. Phys.
118
,
999
(
2003
).
21.
A.
Sanov
and
R.
Mabbs
,
Int. Rev. Phys. Chem.
27
,
53
(
2008
).
22.
M. F.
Kling
 et al,
Science
312
,
246
(
2006
).
23.
M.
Kremer
 et al,
Phys. Rev. Lett.
103
,
213003
(
2009
).
24.
25.
F.
Martín
 et al,
Science
315
,
629
(
2007
).
26.
D.
Ray
 et al,
Phys. Rev. Lett.
103
,
223001
(
2009
).
27.
G.
Sansone
 et al,
Nature
465
,
763
(
2010
).
28.
B.
Fischer
 et al,
Phys. Rev. Lett.
105
,
223001
(
2010
).
29.
F.
He
,
C.
Ruiz
, and
A.
Becker
,
Phys. Rev. Lett.
99
,
083002
(
2007
).
30.
F.
Kelkensberg
,
G.
Sansone
,
M. Y.
Ivanov
, and
M.
Vrakking
,
Phys. Chem. Chem. Phys.
13
,
8647
(
2011
).
31.
Y.
Suzuki
,
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
Phys. Chem. Chem. Phys.
17
,
2971
(
2015
).
32.
T. A.
Green
and
J. M.
Peek
,
Phys. Rev. Lett.
21
,
1732
(
1968
).
33.
S. J.
Singer
,
K. F.
Freed
, and
Y. B.
Band
,
J. Chem. Phys.
79
,
6060
(
1983
).
34.
E.
Charron
,
A.
Giusti-Suzor
, and
F. H.
Mies
,
Phys. Rev. A
49
,
R641
(
1994
).
35.
F.
Anis
and
B. D.
Esry
,
Phys. Rev. Lett.
109
,
133001
(
2012
).
36.
N. G.
Kling
 et al,
Phys. Rev. Lett.
111
,
163004
(
2013
).
37.
F. V.
Bunkin
and
I. I.
Tugov
,
Phys. Rev. A
8
,
601
(
1973
).
38.
S.-l.
Chu
,
C.
Laughlin
, and
K. K.
Datta
,
Chem. Phys. Lett.
98
,
476
(
1983
).
39.
F.
Bouakline
,
J. Phys. Chem. Lett.
9
,
2271
(
2018
).
40.
M. D.
Feit
and
J. A.
Fleck
,
J. Chem. Phys.
78
,
301
(
1983
).
41.
D. K.
Hoffman
,
T. L.
Marchioro
 II
,
M.
Arnold
,
Y.
Huang
,
W.
Zhu
, and
D. J.
Kouri
,
J. Math. Chem.
20
,
117
(
1996
).
42.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
).
43.
A. S.
Dickinson
and
P. R.
Certain
,
J. Chem. Phys.
49
,
4209
(
1968
).
44.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
45.
F.
Bouakline
,
J. Chem. Phys.
152
,
244308
(
2020
).
46.
T. D.
Lee
,
Symmetries, Asymmetries and the World of Particle
(
University of Washington Press
,
Seattle
,
1988
).
47.
M.
Quack
, “
Fundamental symmetries and symmetry violations from high resolution spectroscopy
,” in
Handbook of High-Resolution Spectroscopy
, edited by
M.
Quack
and
F.
Merkt
(
Wiley
,
Chichester
,
2011
), Vol. 1, Chap. 18.
48.
B.
Sheehy
,
B.
Walker
, and
L. F.
DiMauro
,
Phys. Rev. Lett.
74
,
4799
(
1995
).
49.
P. M.
Kraus
 et al,
Science
350
,
790
(
2015
).
50.
F.
Bouakline
and
J. C.
Tremblay
,
Phys. Chem. Chem. Phys.
22
,
15401
(
2020
).
51.
T.
Grohmann
,
Mol. Phys.
119
(
6
),
e1837405
(
2021
).
You do not currently have access to this content.