The structures of metal–organic frameworks (MOFs) can be tuned to reproducibly create adsorption properties that enable the use of these materials in fixed-adsorption beds for non-thermal separations. However, with millions of possible MOF structures, the challenge is to find the MOF with the best adsorption properties to separate a given mixture. Thus, computational, rather than experimental, screening is necessary to identify promising MOF structures that merit further examination, a process traditionally done using molecular simulation. However, even molecular simulation can become intractable when screening an expansive MOF database for their separation properties at more than a few composition, temperature, and pressure combinations. Here, we illustrate progress toward an alternative computational framework that can efficiently identify the highest-performing MOFs for separating various gas mixtures at a variety of conditions and at a fraction of the computational cost of molecular simulation. This framework uses a “multipurpose” multilayer perceptron (MLP) model that can predict single component adsorption of various small adsorbates, which, upon coupling with ideal adsorbed solution theory (IAST), can predict binary adsorption for mixtures such as Xe/Kr, CH4/CH6, N2/CH4, and Ar/Kr at multiple compositions and pressures. For this MLP+IAST framework to work with sufficient accuracy, we found it critical for the MLP to make accurate predictions at low pressures (0.01–0.1 bar). After training a model with this capability, we found that MOFs in the 95th and 90th percentiles of separation performance determined from MLP+IAST calculations were 65% and 87%, respectively, the same as MOFs in the simulation-predicted 95th percentile across several mixtures at diverse conditions (on average). After validating our MLP+IAST framework, we used a clustering algorithm to identify “privileged” MOFs that are high performing for multiple separations at multiple conditions. As an example, we focused on MOFs that were high performing for the industrially relevant separations 80/20 Xe/Kr at 1 bar and 80/20 N2/CH4 at 5 bars. Finally, we used the MOF free energies (calculated on our entire database) to identify privileged MOFs that were also likely synthetically accessible, at least from a thermodynamic perspective.

1.
D. S.
Sholl
and
R. P.
Lively
, “
Seven chemical separations to change the world
,”
Nature
532
,
435
437
(
2016
).
2.
A. W.
Thornton
,
C. M.
Simon
,
J.
Kim
,
O.
Kwon
,
K. S.
Deeg
,
K.
Konstas
,
S. J.
Pas
,
M. R.
Hill
,
D. A.
Winkler
,
M.
Haranczyk
 et al., “
Materials genome in action: Identifying the performance limits of physical hydrogen storage
,”
Chem. Mater.
29
,
2844
2854
(
2017
).
3.
J. E.
Mondloch
,
T.
Yildirim
,
J. T.
Hupp
,
O. V.
Gutov
,
O. K.
Farha
,
V.
Krungleviciute
,
R. Q.
Snurr
,
D. A.
Gomez-Gualdron
, and
B.
Borah
, “
Computational design of metal–organic frameworks based on stable zirconium building units for storage and delivery of methane
,”
Chem. Mater.
26
,
5632
5639
(
2014
).
4.
D. A.
Gómez-Gualdrón
,
Y. J.
Colón
,
X.
Zhang
,
T. C.
Wang
,
Y.-S.
Chen
,
J. T.
Hupp
,
T.
Yildirim
,
O. K.
Farha
,
J.
Zhang
, and
R. Q.
Snurr
, “
Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage
,”
Energy Environ. Sci.
9
,
3279
3289
(
2016
).
5.
A.
Ahmed
,
S.
Seth
,
J.
Purewal
,
A. G.
Wong-Foy
,
M.
Veenstra
,
A. J.
Matzger
, and
D. J.
Siegel
, “
Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks
,”
Nat. Commun.
10
,
1568
(
2019
).
6.
C. E.
Wilmer
,
M.
Leaf
,
C. Y.
Lee
,
O. K.
Farha
,
B. G.
Hauser
,
J. T.
Hupp
, and
R. Q.
Snurr
, “
Large-scale screening of hypothetical metal–organic frameworks
,”
Nat. Chem.
4
,
83
89
(
2011
).
7.
Z.
Chen
,
P.
Li
,
R.
Anderson
,
X.
Wang
,
X.
Zhang
,
L.
Robison
,
L. R.
Redfern
,
S.
Moribe
,
T.
Islamoglu
,
D. A.
Gómez-Gualdrón
 et al., “
Balancing volumetric and gravimetric uptake in highly porous materials for clean energy
,”
Science
368
,
297
303
(
2020
).
8.
D. A.
Gómez-Gualdrón
,
C. E.
Wilmer
,
O. K.
Farha
,
J. T.
Hupp
, and
R. Q.
Snurr
, “
Exploring the limits of methane storage and delivery in nanoporous materials
,”
J. Phys. Chem. C
118
,
6941
6951
(
2014
).
9.
B. J.
Sikora
,
C. E.
Wilmer
,
M. L.
Greenfield
, and
R. Q.
Snurr
, “
Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks
,”
Chem. Sci.
3
,
2217
2223
(
2012
).
10.
D.
Banerjee
,
C. M.
Simon
,
A. M.
Plonka
,
R. K.
Motkuri
,
J.
Liu
,
X.
Chen
,
B.
Smit
,
J. B.
Parise
,
M.
Haranczyk
, and
P. K.
Thallapally
, “
Metal–organic framework with optimally selective xenon adsorption and separation
,”
Nat. Commun.
7
,
ncomms11831
(
2016
).
11.
Y. G.
Chung
,
P.
Bai
,
M.
Haranczyk
,
K. T.
Leperi
,
P.
Li
,
H.
Zhang
,
T. C.
Wang
,
T.
Duerinck
,
F.
You
,
J. T.
Hupp
 et al., “
Computational screening of nanoporous materials for hexane and heptane isomer separation
,”
Chem. Mater.
29
,
6315
6328
(
2017
).
12.
S.
Li
,
Y. G.
Chung
, and
R. Q.
Snurr
, “
High-throughput screening of metal–organic frameworks for CO2 capture in the presence of water
,”
Langmuir
32
,
10368
10376
(
2016
).
13.
H.
Daglar
and
S.
Keskin
, “
Computational screening of metal–organic frameworks for membrane-based CO2/N2/H2O separations: Best materials for flue gas separation
,”
J. Phys. Chem. C
122
,
17347
17357
(
2018
).
14.
P. G.
Boyd
,
A.
Chidambaram
,
E.
García-Díez
,
C. P.
Ireland
,
T. D.
Daff
,
R.
Bounds
,
A.
Gładysiak
,
P.
Schouwink
,
S. M.
Moosavi
,
M. M.
Maroto-Valer
 et al., “
Data-driven design of metal–organic frameworks for wet flue gas CO2 capture
,”
Nature
576
,
253
256
(
2019
).
15.
J.
Rogacka
,
A.
Seremak
,
A.
Luna-Triguero
,
F.
Formalik
,
I.
Matito-Martos
,
L.
Firlej
,
S.
Calero
, and
B.
Kuchta
, “
High-throughput screening of metal–organic frameworks for CO2 and CH4 separation in the presence of water
,”
Chem. Eng. J.
403
,
126392
(
2021
).
16.
C. M.
Simon
,
R.
Mercado
,
S. K.
Schnell
,
B.
Smit
, and
M.
Haranczyk
, “
What are the best materials to separate a xenon/krypton mixture?
,”
Chem. Mater.
27
,
4459
4475
(
2015
).
17.
H.
Dureckova
,
M.
Krykunov
,
M. Z.
Aghaji
, and
T. K.
Woo
, “
Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture
,”
J. Phys. Chem. C
123
,
4133
4139
(
2019
).
18.
J.
Burner
,
L.
Schwiedrzik
,
M.
Krykunov
,
J.
Luo
,
P. G.
Boyd
, and
T. K.
Woo
, “
High-performing deep learning regression models for predicting low-pressure CO2 adsorption properties of metal–organic frameworks
,”
J. Phys. Chem. C
124
,
27996
28005
(
2020
).
19.
G.
Anderson
,
B.
Schweitzer
,
R.
Anderson
, and
D. A.
Gómez-Gualdrón
, “
Attainable volumetric targets for adsorption-based hydrogen storage in porous crystals: Molecular simulation and machine learning
,”
J. Phys. Chem. C
123
,
120
130
(
2019
).
20.
R.
Ma
,
Y. J.
Colón
, and
T.
Luo
, “
Transfer learning study of gas adsorption in metal–organic frameworks
,”
ACS Appl. Mater. Interfaces
12
,
34041
34048
(
2020
).
21.
F.
Gharagheizi
,
D.
Tang
, and
D. S.
Sholl
, “
Selecting adsorbents to separate diverse near-azeotropic chemicals
,”
J. Phys. Chem. C
124
,
3664
3670
(
2020
).
22.
Y.
Sun
,
R. F.
DeJaco
, and
J. I.
Siepmann
, “
Deep neural network learning of complex binary sorption equilibria from molecular simulation data
,”
Chem. Sci.
10
,
4377
4388
(
2019
).
23.
R.
Anderson
,
A.
Biong
, and
D. A.
Gómez-Gualdrón
, “
Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model
,”
J. Chem. Theory Comput.
16
,
1271
1283
(
2020
).
24.
N. F.
Cessford
,
N. A.
Seaton
, and
T.
Düren
, “
Evaluation of ideal adsorbed solution theory as a tool for the design of metal–organic framework materials
,”
Ind. Eng. Chem. Res.
51
,
4911
4921
(
2012
).
25.
T.
Van Heest
,
S. L.
Teich-McGoldrick
,
J. A.
Greathouse
,
M. D.
Allendorf
, and
D. S.
Sholl
, “
Identification of metal–organic framework materials for adsorption separation of rare gases: Applicability of ideal adsorbed solution theory (IAST) and effects of inaccessible framework regions
,”
J. Phys. Chem. C
116
,
13183
13195
(
2012
).
26.
Y.
Gurdal
and
S.
Keskin
, “
Predicting noble gas separation performance of metal organic frameworks using theoretical correlations
,”
J. Phys. Chem. C
117
,
5229
5241
(
2013
).
27.
S.
Furmaniak
,
S.
Koter
,
A. P.
Terzyk
,
P. A.
Gauden
,
P.
Kowalczyk
, and
G.
Rychlicki
, “
New insights into the ideal adsorbed solution theory
,”
Phys. Chem. Chem. Phys.
17
,
7232
7247
(
2015
).
28.
K. S.
Walton
and
D. S.
Sholl
, “
Predicting multicomponent adsorption: 50 Years of the ideal adsorbed solution theory
,”
AIChE J.
61
,
2757
2762
(
2015
).
29.
A. N.
Dickey
,
A. Ö.
Yazaydın
,
R. R.
Willis
, and
R. Q.
Snurr
, “
Screening CO2/N2 selectivity in metal-organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory
,”
Can. J. Chem. Eng.
90
,
825
832
(
2012
).
30.
R.
Krishna
and
J. M.
van Baten
, “
Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures
,”
Chem. Eng. J.
133
,
121
131
(
2007
).
31.
D.
Tang
,
F.
Gharagheizi
, and
D. S.
Sholl
, “
Adsorption-based separation of near-azeotropic mixtures—A challenging example for high-throughput development of adsorbents
,”
J. Phys. Chem. B
125
,
926
936
(
2021
).
32.
F. G.
Kerry
,
Industrial Gas Handbook: Gas Separation and Purification
(
CRC Press
,
2007
).
33.
J.
Liu
,
P. K.
Thallapally
, and
D.
Strachan
, “
Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants
,”
Langmuir
28
,
11584
11589
(
2012
).
34.
R.
Anderson
,
B.
Schweitzer
,
T.
Wu
,
M. A.
Carreon
, and
D. A.
Gómez-Gualdrón
, “
Molecular simulation insights on Xe/Kr separation in a set of nanoporous crystalline membranes
,”
ACS Appl. Mater. Interfaces
10
,
582
592
(
2018
).
35.
R. H.
Hugman
,
E. H.
Vidas
, and
P. S.
Springer
, “
Chemical composition of discovered and undiscovered natural gas in the Lower-48 United States. Project Summary. Final Report, 1 November 1988-31 March 1990. United States
,” available at https://www.osti.gov/biblio/6087223-chemical-composition-discovered-undiscovered-natural-gas-lower-united-states-project-summary-final-report-november-march.
36.
J.
Hu
,
T.
Sun
,
X.
Liu
,
Y.
Guo
, and
S.
Wang
, “
Separation of CH4/N2 mixtures in metal–organic frameworks with 1D micro-channels
,”
RSC Adv.
6
,
64039
64046
(
2016
).
37.
R.
Krishna
, “
Metrics for evaluation and screening of metal-organic frameworks for applications in mixture separations
,”
ACS Omega
5
,
16987
17004
(
2020
).
38.
H. R.
Sant Anna
,
A. G.
Barreto
,
F. W.
Tavares
, and
J. F.
do Nascimento
, “
Methane/nitrogen separation through pressure swing adsorption process from nitrogen-rich streams
,”
Chem. Eng. Process.: Process Intensif.
103
,
70
79
(
2016
).
39.
L.
Li
,
L.
Yang
,
J.
Wang
,
Z.
Zhang
,
Q.
Yang
,
Y.
Yang
,
Q.
Ren
, and
Z.
Bao
, “
Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework
,”
AIChE J.
64
,
3681
3689
(
2018
).
40.
J.
Jia
,
L.
Wang
,
F.
Sun
,
X.
Jing
,
Z.
Bian
,
L.
Gao
,
R.
Krishna
, and
G.
Zhu
, “
The adsorption and simulated separation of light hydrocarbons in isoreticular metal–organic frameworks based on dendritic ligands with different aliphatic side chains
,”
Chem.-Eur. J.
20
,
9073
9080
(
2014
).
41.
T.
Ren
,
M.
Patel
, and
K.
Blok
, “
Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes
,”
Energy
31
,
425
451
(
2006
).
42.
X.-Z.
Dong
,
F.
Ritterbusch
,
Y.-Q.
Chu
,
J.-Q.
Gu
,
S.-M.
Hu
,
W.
Jiang
,
Z.-T.
Lu
,
G.-M.
Yang
, and
L.
Zhao
, “
Dual separation of krypton and argon from environmental samples for radioisotope dating
,”
Anal. Chem.
91
,
13576
13581
(
2019
).
43.
S.
Péron
,
S.
Mukhopadhyay
, and
M.
Huh
, “
A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon
,”
J. Anal. At. Spectrom.
35
,
2663
2671
(
2020
).
44.
K. T.
Leperi
,
Y. G.
Chung
,
F.
You
, and
R. Q.
Snurr
, “
Development of a general evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture
,”
ACS Sustainable Chem. Eng.
7
,
11529
11539
(
2019
).
45.
R.
Krishna
, “
Screening metal–organic frameworks for mixture separations in fixed-bed adsorbers using a combined selectivity/capacity metric
,”
RSC Adv.
7
,
35724
35737
(
2017
).
46.
D.
Tang
,
Y.
Wu
,
R. J.
Verploegh
, and
D. S.
Sholl
, “
Efficiently exploring adsorption space to identify privileged adsorbents for chemical separations of a diverse set of molecules
,”
ChemSusChem
11
,
1567
1575
(
2018
).
47.
R.
Anderson
and
D. A.
Gómez-Gualdrón
, “
Large-scale free energy calculations on a computational metal–organic frameworks database: Toward synthetic likelihood predictions
,”
Chem. Mater.
32
,
8106
8119
(
2020
).
48.
R.
Anderson
and
D. A.
Gómez-Gualdrón
, “
Increasing topological diversity during computational ‘synthesis’ of porous crystals: How and why
,”
CrystEngComm
21
,
1653
1665
(
2019
).
49.
Y. J.
Colón
,
D. A.
Gómez-Gualdrón
, and
R. Q.
Snurr
, “
Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications
,”
Cryst. Growth Des.
17
,
5801
5810
(
2017
).
50.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
51.
M. A.
Addicoat
,
N.
Vankova
,
I. F.
Akter
, and
T.
Heine
, “
Extension of the universal force field to metal–organic frameworks
,”
J. Chem. Theory Comput.
10
,
880
891
(
2014
).
52.
D. E.
Coupry
,
M. A.
Addicoat
, and
T.
Heine
, “
Extension of the universal force field for metal–organic frameworks
,”
J. Chem. Theory Comput.
12
,
5215
5225
(
2016
).
53.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
54.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
,
81
101
(
2016
).
55.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
56.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
57.
T. F.
Willems
,
C. H.
Rycroft
,
M.
Kazi
,
J. C.
Meza
, and
M.
Haranczyk
, “
Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
,”
Microporous Mesoporous Mater.
149
,
134
141
(
2012
).
58.
C. M.
Simon
,
B.
Smit
, and
M.
Haranczyk
, “
pyIAST: Ideal adsorbed solution theory (IAST) Python package
,”
Comput. Phys. Commun.
200
,
364
380
(
2016
).
59.
L.
Scrucca
,
M.
Fop
,
T. B.
Murphy
, and
A. E.
Raftery
, “
mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models
,”
R J.
8
,
289
317
(
2016
).
60.
D.
Frenkel
and
B.
Smith
,
Understanding Molecular Simulations from Algorithms to Applications
(
Academic Press
,
2002
).
61.
X.
Cai
,
F.
Gharagheizi
,
L. W.
Bingel
,
D.
Shade
,
K. S.
Walton
, and
D. S.
Sholl
, “
A collection of more than 900 gas mixture adsorption experiments in porous materials from literature meta-analysis
,”
Ind. Eng. Chem. Res.
60
,
639
651
(
2021
).
62.
L.
Scrucca
, “
Dimension reduction for model-based clustering
,”
Stat. Comput.
20
,
471
484
(
2010
).
63.
X.
Duan
,
W.
Zheng
,
B.
Yu
, and
Z.
Ji
, “
A microporous metal–organic framework with soc topology for adsorption and separation selectivity of C2H2/CO2
,”
Chem. Pap.
73
,
2371
2375
(
2019
).
64.
H. K.
Chae
,
J.
Kim
,
O. D.
Friedrichs
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology
,”
Angew. Chem., Int. Ed.
42
,
3907
3909
(
2003
).
65.
H.
Furukawa
,
N.
Ko
,
Y. B.
Go
,
N.
Aratani
,
S. B.
Choi
,
E.
Choi
,
A. Ö.
Yazaydin
,
R. Q.
Snurr
,
M.
O’Keeffe
,
J.
Kim
 et al., “
Ultrahigh porosity in metal-organic frameworks
,”
Science
329
,
424
428
(
2010
).
66.
J.
Jia
,
F.
Sun
,
T.
Borjigin
,
H.
Ren
,
T.
Zhang
,
Z.
Bian
,
L.
Gao
, and
G.
Zhu
, “
Highly porous and robust ionic MOFs with nia topology constructed by connecting an octahedral ligand and a trigonal prismatic metal cluster
,”
Chem. Commun.
48
,
6010
6012
(
2012
).
67.
Z.
Chen
,
S.
Xiang
,
T.
Liao
,
Y.
Yang
,
Y.-S.
Chen
,
Y.
Zhou
,
D.
Zhao
, and
B.
Chen
, “
A new multidentate hexacarboxylic acid for the construction of porous Metal–Organic frameworks of diverse structures and porosities
,”
Cryst. Growth Des.
10
,
2775
2779
(
2010
).
68.
X.
Lin
,
I.
Telepeni
,
A. J.
Blake
,
A.
Dailly
,
C. M.
Brown
,
J. M.
Simmons
,
M.
Zoppi
,
G. S.
Walker
,
K. M.
Thomas
,
T. J.
Mays
 et al., “
High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization, and exposed metal sites
,”
J. Am. Chem. Soc.
131
,
2159
2171
(
2009
).
69.
Z.
Guo
,
H.
Wu
,
G.
Srinivas
,
Y.
Zhou
,
S.
Xiang
,
Z.
Chen
,
Y.
Yang
,
W.
Zhou
,
M.
O’Keeffe
, and
B.
Chen
, “
A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature
,”
Angew. Chem., Int. Ed.
50
,
3178
3181
(
2011
).

Supplementary Material

You do not currently have access to this content.