The free energy of glasses cannot be estimated using thermodynamic integration as glasses are intrinsically not in equilibrium. We present numerical simulations showing that, in contrast, plausible free-energy estimates of a Kob–Andersen glass can be obtained using the Jarzynski relation. Using the Jarzynski relation, we also compute the chemical potential difference of the two components of this system and find that, in the glassy regime, the Jarzynski estimate matches well with the extrapolated value of the supercooled liquid. Our findings are of broader interest as they show that the Jarzynski method can be used under conditions where the thermodynamic integration approach, which is normally more accurate, breaks down completely. Systems where such an approach might be useful are gels and jammed glassy structures formed by compression.

1.
C.
Jarzynski
, “
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach
,”
Phys. Rev. E
56
,
5018
(
1997
).
2.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
(
1997
).
3.
G. E.
Crooks
, “
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,”
Phys. Rev. E
60
,
2721
(
1999
).
4.
G. E.
Crooks
, “
Path-ensemble averages in systems driven far from equilibrium
,”
Phys. Rev. E
61
,
2361
(
2000
).
5.
G. E.
Crooks
, “
Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems
,”
J. Stat. Phys.
90
,
1481
1487
(
1998
).
6.
D.
Collin
,
F.
Ritort
,
C.
Jarzynski
,
S. B.
Smith
,
I.
Tinoco
, and
C.
Bustamante
, “
Verification of the crooks fluctuation theorem and recovery of RNA folding free energies
,”
Nature
437
,
231
234
(
2005
).
7.
F.
Douarche
,
S.
Ciliberto
,
A.
Petrosyan
, and
I.
Rabbiosi
, “
An experimental test of the Jarzynski equality in a mechanical experiment
,”
Europhys. Lett.
70
,
593
(
2005
).
8.
S.
Toyabe
,
T.
Sagawa
,
M.
Ueda
,
E.
Muneyuki
, and
M.
Sano
, “
Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality
,”
Nat. Phys.
6
,
988
992
(
2010
).
9.
C.
Dellago
and
G.
Hummer
, “
Computing equilibrium free energies using non-equilibrium molecular dynamics
,”
Entropy
16
,
41
61
(
2014
).
10.
W.
Lechner
and
C.
Dellago
, “
On the efficiency of path sampling methods for the calculation of free energies from non-equilibrium simulations
,”
J. Stat. Mech.: Theory Exp.
2007
,
P04001
.
11.
H.
Oberhofer
and
C.
Dellago
, “
Efficient extraction of free energy profiles from nonequilibrium experiments
,”
J. Comput. Chem.
30
,
1726
1736
(
2009
).
12.
P.
Geiger
and
C.
Dellago
, “
Optimum protocol for fast-switching free-energy calculations
,”
Phys. Rev. E
81
,
021127
(
2010
).
13.
C. A.
Angell
, “
Formation of glasses from liquids and biopolymers
,”
Science
267
,
1924
1935
(
1995
).
14.
P. G.
Debenedetti
and
F. H.
Stillinger
, “
Supercooled liquids and the glass transition
,”
Nature
410
,
259
267
(
2001
).
15.
L.
Berthier
,
P.
Charbonneau
,
D.
Coslovich
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
, “
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11356
11361
(
2017
).
16.
A. D. S.
Parmar
,
M.
Ozawa
, and
L.
Berthier
, “
Ultrastable metallic glasses in silico
,”
Phys. Rev. Lett.
125
,
085505
(
2020
).
17.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function
,”
Phys. Rev. E
51
,
4626
(
1995
).
18.
J.
Westergren
,
L.
Lindfors
,
T.
Höglund
,
K.
Lüder
,
S.
Nordholm
, and
R.
Kjellander
, “
In silico prediction of drug solubility: 1. Free energy of hydration
,”
J. Phys. Chem. B
111
,
1872
1882
(
2007
).
19.
S.
Sastry
, “
The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids
,”
Nature
409
,
164
167
(
2001
).
20.
S.
Sengupta
,
F.
Vasconcelos
,
F.
Affouard
, and
S.
Sastry
, “
Dependence of the fragility of a glass former on the softness of interparticle interactions
,”
J. Chem. Phys.
135
,
194503
(
2011
).
21.
H. A.
Vinutha
and
D.
Frenkel
, “
Numerical method for computing the free energy of glasses
,”
Phys. Rev. E
102
,
063303
(
2020
).
22.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol. 1.
23.
K. K.
Mon
and
R. B.
Griffiths
, “
Chemical potential by gradual insertion of a particle in Monte Carlo simulation
,”
Phys. Rev. A
31
,
956
(
1985
).
24.
H. A.
Vinutha
and
D.
Frenkel
, “
Computation of the chemical potential and solubility of amorphous solids
,”
J. Chem. Phys.
154
,
124502
(
2021
).
25.
A preliminary version of Fig. 2, with poorer statistics, was reported in Ref. 24.

Supplementary Material

You do not currently have access to this content.