Mechanotransduction, the biological response to mechanical stress, is often initiated by activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge in fully understanding this process is in predicting how lipid bilayers deform upon the application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesis that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (KC), the area compressibility (KA), and the surface shear viscosity (ηm) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) lipid bilayers with and without phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of the PC bilayer with PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of MS piezo channels.

1.
J. H.
Lorent
,
K. R.
Levental
,
L.
Ganesan
,
G.
Rivera-Longsworth
,
E.
Sezgin
,
M.
Doktorova
,
E.
Lyman
, and
I.
Levental
, “
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape
,”
Nat. Chem. Biol.
16
(
6
),
644
652
(
2020
);
[PubMed]
P. F.
Devaux
, “
Static and dynamic lipid asymmetry in cell membranes
,”
Biochemistry
30
(
5
),
1163
1173
(
1991
).
[PubMed]
2.
N.
Bavi
,
C. D.
Cox
,
E.
Perozo
, and
B.
Martinac
, “
Toward a structural blueprint for bilayer-mediated channel mechanosensitivity
,”
Channels
11
(
2
),
91
93
(
2017
);
[PubMed]
E.
Perozo
,
A.
Kloda
,
D. M.
Cortes
, and
B.
Martinac
, “
Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating
,”
Nat. Struct. Biol.
9
(
9
),
696
703
(
2002
);
[PubMed]
C. D.
Cox
,
N.
Bavi
, and
B.
Martinac
, “
Biophysical principles of ion-channel-mediated mechanosensory transduction
,”
Cell Rep.
29
(
1
),
1
12
(
2019
).
[PubMed]
3.
(a)
R.
Phillips
,
T.
Ursell
,
P.
Wiggins
, and
P.
Sens
, “
Emerging roles for lipids in shaping membrane-protein function
,”
Nature
459
(
7245
),
379
385
(
2009
);
[PubMed]
(b)
A. L.
Duncan
,
W.
Song
, and
M. S. P.
Sansom
, “
Lipid-dependent regulation of ion channels and G protein-coupled receptors: Insights from structures and simulations
,”
Annu. Rev. Pharmacol. Toxicol.
60
,
31
50
(
2020
);
[PubMed]
(c)
A. R.
Battle
,
P.
Ridone
,
N.
Bavi
,
Y.
Nakayama
,
Y. A.
Nikolaev
, and
B.
Martinac
, “
Lipid-protein interactions: Lessons learned from stress
,”
Biochim. Biophys. Acta
1848
(
9
),
1744
1756
(
2015
).
[PubMed]
4.
K.
Poole
,
R.
Herget
,
L.
Lapatsina
,
H.-D.
Ngo
, and
G. R.
Lewin
, “
Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch
,”
Nat. Commun.
5
,
3520
(
2014
);
[PubMed]
Y.
Qi
,
L.
Andolfi
,
F.
Frattini
,
F.
Mayer
,
M.
Lazzarino
, and
J.
Hu
, “
Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons
,”
Nat. Commun.
6
,
8512
(
2015
).
[PubMed]
5.
L. O.
Romero
,
A. E.
Massey
,
A. D.
Mata-Daboin
,
F. J.
Sierra-Valdez
,
S. C.
Chauhan
,
J. F.
Cordero-Morales
, and
V.
Vasquez
, “
Dietary fatty acids fine-tune Piezo1 mechanical response
,”
Nat. Commun.
10
(
1
),
1200
(
2019
);
[PubMed]
L. O.
Romero
,
R.
Caires
,
A. R.
Nickolls
,
A. T.
Chesler
,
J. F.
Cordero-Morales
, and
V.
Vasquez
, “
A dietary fatty acid counteracts neuronal mechanical sensitization
,”
Nat. Commun.
11
(
1
),
3938
(
2020
).
[PubMed]
6.
I.
Borbiro
,
D.
Badheka
, and
T.
Rohacs
, “
Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides
,”
Sci. Signaling
8
(
363
),
ra15
(
2015
).
7.
M.
Tsuchiya
,
Y.
Hara
,
M.
Okuda
,
K.
Itoh
,
R.
Nishioka
,
A.
Shiomi
,
K.
Nagao
,
M.
Mori
,
Y.
Mori
,
J.
Ikenouchi
,
R.
Suzuki
,
M.
Tanaka
,
T.
Ohwada
,
J.
Aoki
,
M.
Kanagawa
,
T.
Toda
,
Y.
Nagata
,
R.
Matsuda
,
Y.
Takayama
,
M.
Tominaga
, and
M.
Umeda
, “
Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation
,”
Nat. Commun.
9
(
1
),
2049
(
2018
).
8.
R.
Syeda
,
M. N.
Florendo
,
C. D.
Cox
,
J. M.
Kefauver
,
J. S.
Santos
,
B.
Martinac
, and
A.
Patapoutian
, “
Piezo1 channels are inherently mechanosensitive
,”
Cell Rep.
17
(
7
),
1739
1746
(
2016
).
9.
S. B.
Hansen
,
X.
Tao
, and
R.
MacKinnon
, “
Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2
,”
Nature
477
(
7365
),
495
498
(
2011
).
10.
T. E. T.
Hughes
,
R. A.
Pumroy
,
A. T.
Yazici
,
M. A.
Kasimova
,
E. C.
Fluck
,
K. W.
Huynh
,
A.
Samanta
,
S.
Molugu
,
Z. H.
Zhou
,
V.
Carnevale
,
T.
Rohacs
, and
V. Y.
Moiseenkova-Bell
, “
Structural insights on TRPV5 gating by endogenous modulators
,”
Nat. Commun.
9
(
1
),
4198
(
2018
).
11.
Y.
Yin
,
S. C.
Le
,
A. L.
Hsu
,
M. J.
Borgnia
,
H.
Yang
, and
S.-Y.
Lee
, “
Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel
,”
Science
363
(
6430
),
eaav9334
(
2019
).
12.
M.
Winterhalter
and
W.
Helfrich
, “
Bending elasticity of electrically charged bilayers: Coupled monolayers, neutral surfaces, and balancing stresses
,”
J. Phys. Chem.
96
(
1
),
327
330
(
1992
).
13.
M.
Doktorova
,
F. A.
Heberle
,
D.
Marquardt
,
R.
Rusinova
,
R. L.
Sanford
,
T. A.
Peyear
,
J.
Katsaras
,
G. W.
Feigenson
,
H.
Weinstein
, and
O. S.
Andersen
, “
Gramicidin increases lipid flip-flop in symmetric and asymmetric lipid vesicles
,”
Biophys. J.
116
(
5
),
860
873
(
2019
);
[PubMed]
C.
Nielsen
,
M.
Goulian
, and
O. S.
Andersen
, “
Energetics of inclusion-induced bilayer deformations
,”
Biophys. J.
74
(
4
),
1966
1983
(
1998
).
[PubMed]
14.
S.
McLaughlin
,
J.
Wang
,
A.
Gambhir
, and
D.
Murray
, “
PIP(2) and proteins: Interactions, organization, and information flow
,”
Annu. Rev. Biophys. Biomol. Struct.
31
,
151
175
(
2002
).
15.
G.
van Meer
,
D. R.
Voelker
, and
G. W.
Feigenson
, “
Membrane lipids: Where they are and how they behave
,”
Nat. Rev. Mol. Cell Biol.
9
(
2
),
112
124
(
2008
).
16.
J. B.
Klauda
,
R. M.
Venable
,
J. A.
Freites
,
J. W.
O’Connor
,
D. J.
Tobias
,
C.
Mondragon-Ramirez
,
I.
Vorobyov
,
A. D.
MacKerell
, Jr.
, and
R. W.
Pastor
, “
Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types
,”
J. Phys. Chem. B
114
(
23
),
7830
7843
(
2010
).
17.
(a)
S.
Jo
,
J. B.
Lim
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes
,”
Biophys. J.
97
(
1
),
50
58
(
2009
);
[PubMed]
(b)
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
, “
CHARMM-GUI: A web-based graphical user interface for CHARMM
,”
J. Comput. Chem.
29
(
11
),
1859
1865
(
2008
).
[PubMed]
18.
M.
Doktorova
and
H.
Weinstein
, “
Accurate in silico modeling of asymmetric bilayers based on biophysical principles
,”
Biophys. J.
115
(
9
),
1638
1643
(
2018
).
19.
S. E.
Feller
and
R. W.
Pastor
, “
Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities
,”
J. Chem. Phys.
111
(
3
),
1281
1287
(
1999
).
20.
M.
Doktorova
,
M. V.
LeVine
,
G.
Khelashvili
, and
H.
Weinstein
, “
A new computational method for membrane compressibility: Bilayer mechanical thickness revisited
,”
Biophys. J.
116
(
3
),
487
502
(
2019
).
21.
(a)
O.
Edholm
and
J. F.
Nagle
, “
Areas of molecules in membranes consisting of mixtures
,”
Biophys. J.
89
(
3
),
1827
1832
(
2005
);
[PubMed]
(b)
M.
Alwarawrah
,
J.
Dai
, and
J.
Huang
, “
A molecular view of the cholesterol condensing effect in DOPC lipid bilayers
,”
J. Phys. Chem. B
114
(
22
),
7516
7523
(
2010
).
[PubMed]
22.
N.
Johner
,
D.
Harries
, and
G.
Khelashvili
, “
Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations
,”
BMC Bioinf.
17
,
161
(
2016
).
23.
G.
Khelashvili
,
G.
Pabst
, and
D.
Harries
, “
Cholesterol orientation and tilt modulus in DMPC bilayers
,”
J. Phys. Chem. B
114
(
22
),
7524
7534
(
2010
).
24.
R. M.
Venable
,
F. L. H.
Brown
, and
R. W.
Pastor
, “
Mechanical properties of lipid bilayers from molecular dynamics simulation
,”
Chem. Phys. Lipids
192
,
60
74
(
2015
).
25.
M.
Hu
,
P.
Diggins
, and
M.
Deserno
, “
Determining the bending modulus of a lipid membrane by simulating buckling
,”
J. Chem. Phys.
138
(
21
),
214110
(
2013
).
26.
J.
Eid
,
H.
Razmazma
,
A.
Jraij
,
A.
Ebrahimi
, and
L.
Monticelli
, “
On calculating the bending modulus of lipid bilayer membranes from buckling simulations
,”
J. Phys. Chem. B
124
(
29
),
6299
6311
(
2020
);
[PubMed]
A.
Hossein
and
M.
Deserno
, “
Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes
,”
Biophys. J.
118
(
3
),
624
642
(
2020
).
[PubMed]
27.
(a)
M.
Doktorova
,
D.
Harries
, and
G.
Khelashvili
, “
Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
19
(
25
),
16806
16818
(
2017
);
[PubMed]
(b)
G.
Khelashvili
,
B.
Kollmitzer
,
P.
Heftberger
,
G.
Pabst
, and
D.
Harries
, “
Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases
,”
J. Chem. Theory Comput.
9
(
9
),
3866
3871
(
2013
).
[PubMed]
28.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
(
1
),
209
217
(
2002
).
29.
(a)
S. A.
Shkulipa
,
W. K.
den Otter
, and
W. J.
Briels
, “
Surface viscosity, diffusion, and intermonolayer friction: Simulating sheared amphiphilic bilayers
,”
Biophys. J.
89
(
2
),
823
829
(
2005
);
[PubMed]
(b)
W. K.
den Otter
and
S. A.
Shkulipa
, “
Intermonolayer friction and surface shear viscosity of lipid bilayer membranes
,”
Biophys. J.
93
(
2
),
423
433
(
2007
).
[PubMed]
30.
A.
Zgorski
,
R. W.
Pastor
, and
E.
Lyman
, “
Surface shear viscosity and interleaflet friction from nonequilibrium simulations of lipid bilayers
,”
J. Chem. Theory Comput.
15
(
11
),
6471
6481
(
2019
).
31.
M.
Patra
, “
Lateral pressure profiles in cholesterol-DPPC bilayers
,”
Eur. Biophys. J.
35
(
1
),
79
88
(
2005
).
32.
H.
Binder
and
K.
Gawrisch
, “
Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes
,”
J. Phys. Chem. B
105
(
49
),
12378
12390
(
2001
).
33.
N.
Kučerka
,
S.
Tristram-Nagle
, and
J. F.
Nagle
, “
Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains
,”
J. Membr. Biol.
208
(
3
),
193
202
(
2005
);
[PubMed]
M.
Mell
,
L. H.
Moleiro
,
Y.
Hertle
,
P.
Fouquet
,
R.
Schweins
,
I.
López-Montero
,
T.
Hellweg
, and
F.
Monroy
, “
Bending stiffness of biological membranes: What can be measured by neutron spin echo?
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
36
(
7
),
75
(
2013
).
34.
A. J.
Patel
,
E.
Honore
,
F.
Maingret
,
F.
Lesage
,
M.
Fink
,
F.
Duprat
, and
M.
Lazdunski
, “
A mammalian two pore domain mechano-gated S-like K+ channel
,”
EMBO J.
17
(
15
),
4283
4290
(
1998
).
35.
X.
Gao
,
L.
Wu
, and
R. G.
O’Neil
, “
Temperature-modulated diversity of TRPV4 channel gating: Activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways
,”
J. Biol. Chem.
278
(
29
),
27129
27137
(
2003
).
36.
(a)
O. S.
Andersen
and
R. E.
Koeppe
II
, “
Bilayer thickness and membrane protein function: An energetic perspective
,”
36
,
107
130
(
2007
);
[PubMed]
(b)
R.
Chadda
,
N.
Bernhardt
,
E. G.
Kelley
,
S. C. M.
Teixeira
,
K.
Griffith
,
A.
Gil-Ley
,
T. N.
Ozturk
,
L. E.
Hughes
,
A.
Forsythe
,
V.
Krishnamani
,
J. D.
Faraldo-Gomez
, and
J. L.
Robertson
, “
Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states
,”
10
,
e63288
(
2021
);
[PubMed]
(c)
T.
Wijerathne
,
A. D.
Ozkan
,
W.
Jiang
,
Y.
Luo
, and
J. J.
Lacroix
, “
An inter-channel cooperative mechanism mediates PIEZO1’s exquisite mechanosensitivity
,” bioRxiv:440217 (
2021
).
37.
C. A.
Haselwandter
and
R.
MacKinnon
, “
Piezo’s membrane footprint and its contribution to mechanosensitivity
,”
Elife
7
,
e41968
(
2018
).
38.
W.
Jiang
,
J. S.
Del Rosario
,
W.
Botello-Smith
,
S.
Zhao
,
Y.-C.
Lin
,
H.
Zhang
,
J.
Lacroix
,
T.
Rohacs
, and
Y. L.
Luo
, “
Crowding-induced opening of the mechanosensitive Piezo1 channel in silico
,”
Commun. Biol.
4
(
1
),
84
(
2021
).
39.
W.
Rawicz
,
K. C.
Olbrich
,
T.
McIntosh
,
D.
Needham
, and
E.
Evans
, “
Effect of chain length and unsaturation on elasticity of lipid bilayers
,”
Biophys. J.
79
(
1
),
328
339
(
2000
).
40.
Y.
Yu
,
A.
Krämer
,
R. M.
Venable
,
A. C.
Simmonett
,
A. D.
MacKerell
, Jr.
,
J. B.
Klauda
,
R. W.
Pastor
, and
B. R.
Brooks
, “
Semi-automated optimization of the CHARMM36 lipid force field to include explicit treatment of long-range dispersion
,”
J. Chem. Theory Comput.
17
(
3
),
1562
1580
(
2021
).

Supplementary Material

You do not currently have access to this content.