The solubility of synthetic indigo dye was measured at room temperature in three deep eutectic solvents (DESs)—1:3 choline chloride:1,4-butanediol, 1:3 tetrabutylammonium bromide:1,4-butanediol, and 1:2 choline chloride:p-cresol—to test the hypothesis that the structure of DESs can be systematically altered, to induce specific DES–solute interactions, and, thus, tune solubility. DESs were designed starting from the well-known cholinium chloride salt mixed with the partially amphiphilic 1,4-butanediol hydrogen bond donor (HBD), and then, the effect of increasing salt hydrophobicity (tetrabutylammonium bromide) and HBD hydrophobicity (p-cresol) was explored. Measurements were made between 2.5 and 25 wt. % H2O, as a reasonable range representing atmospherically absorbed water, and molecular dynamics simulations were used for structural analysis. The choline chloride:1,4-butanediol DES had the lowest indigo solubility, with only the hydrophobic character of the alcohol alkyl spacers. Solubility was highest for indigo in the tetrabutylammonium bromide:1,4-butanediol DES with 2.5 wt. % H2O due to interactions of indigo with the hydrophobic cation, but further addition of water caused this to reduce in line with the added water mole fraction, as water solvated the cation and reduced the extent of the hydrophobic region. The ChCl:p-cresol DES did not have the highest solubility at 2.5 wt. % H2O, but did at 25 wt. % H2O. Radial distribution functions, coordination numbers, and spatial distribution functions demonstrate that this is due to strong indigo–HBD interactions, which allow this system to resist the higher mole fraction of water molecules and retain its solubility. The DES is, therefore, a host to local-composition effects in solvation, where its hydrophobic moieties concentrate around the hydrophobic solute, illustrating the versatility of DES as solvents.

1.
F.
Guthrie
, “
LII. On eutexia
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
17
,
462
482
(
1884
).
2.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
H. L.
Munro
,
R. K.
Rasheed
, and
V.
Tambyrajah
, “
Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains
,”
Chem. Commun.
19
,
2010
2011
(
2001
).
3.
L. J. B. M.
Kollau
,
M.
Vis
,
A.
van den Bruinhorst
,
R.
Tuinier
, and
G.
de With
, “
Entropy models for the description of the solid–liquid regime of deep eutectic solutions
,”
J. Mol. Liq.
302
,
112155
(
2020
).
4.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
R. K.
Rasheed
, and
V.
Tambyrajah
, “
Novel solvent properties of choline chloride/urea mixtures
,”
Chem. Commun.
2003
,
70
71
(
2003
).
5.
L. J. B. M.
Kollau
,
M.
Vis
,
A.
van den Bruinhorst
,
A. C. C.
Esteves
, and
R.
Tuinier
, “
Quantification of the liquid window of deep eutectic solvents
,”
Chem. Commun.
54
,
13351
13354
(
2018
).
6.
A.
van den Bruinhorst
,
T.
Spyriouni
,
J.-R.
Hill
, and
M. C.
Kroon
, “
Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents
,”
J. Phys. Chem. B
122
,
369
379
(
2018
).
7.
E. L.
Smith
,
A. P.
Abbott
, and
K. S.
Ryder
, “
Deep eutectic solvents (DESs) and their applications
,”
Chem. Rev.
114
,
11060
11082
(
2014
).
8.
B.
Gurkan
,
H.
Squire
, and
E.
Pentzer
, “
Metal-free deep eutectic solvents: Preparation, physical properties, and significance
,”
J. Phys. Chem. Lett.
10
,
7956
7964
(
2019
).
9.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
Structure and properties of “Type IV” lanthanide nitrate hydrate:urea deep eutectic solvents
,”
ACS Sustainable Chem. Eng.
7
,
4932
4940
(
2019
).
10.
Q.
Zhang
,
K.
De Oliveira Vigier
,
S.
Royer
, and
F.
Jérôme
, “
Deep eutectic solvents: Syntheses, properties and applications
,”
Chem. Soc. Rev.
41
,
7108
7146
(
2012
).
11.
D.
MacFarlane
,
A. L.
Chong
,
M.
Forsyth
,
M.
Kar
,
V.
Ranganathan
,
A.
Somers
, and
J. M.
Pringle
, “
New dimensions in salt-solvent mixtures: A 4th evolution of ionic liquids
,”
Faraday Discuss.
206
,
9
28
(
2018
).
12.
B.
Tang
,
H.
Zhang
, and
K. H.
Row
, “
Application of deep eutectic solvents in the extraction and separation of target compounds from various samples
,”
J. Sep. Sci.
38
,
1053
1064
(
2015
).
13.
T. E.
Phelps
,
N.
Bhawawet
,
S. S.
Jurisson
, and
G. A.
Baker
, “
Efficient and selective extraction of 99mTcO4 from aqueous media using hydrophobic deep eutectic solvents
,”
ACS Sustainable Chem. Eng.
6
,
13656
13661
(
2018
).
14.
A. P.
Abbott
and
K. J.
McKenzie
, “
Application of ionic liquids to the electrodeposition of metals
,”
Phys. Chem. Chem. Phys.
8
,
4265
4279
(
2006
).
15.
K.
Haerens
,
E.
Matthijs
,
A.
Chmielarz
, and
B.
Van der Bruggen
, “
The use of ionic liquids based on choline chloride for metal deposition: A green alternative?
,”
J. Environ. Manage.
90
,
3245
3252
(
2009
).
16.
D. A.
Alonso
,
A.
Baeza
,
R.
Chinchilla
,
G.
Guillena
,
I. M.
Pastor
, and
D. J.
Ramón
, “
Deep eutectic solvents: The organic reaction medium of the century
,”
Eur. J. Org. Chem.
2016
,
612
632
.
17.
J.
García-Álvarez
,
E.
Hevia
, and
V.
Capriati
, “
The future of polar organometallic chemistry written in bio-based solvents and water
,”
Chem.-Eur. J.
24
,
14854
14863
(
2018
).
18.
J. D.
Mota-Morales
,
R. J.
Sánchez-Leija
,
A.
Carranza
,
J. A.
Pojman
,
F.
del Monte
, and
G.
Luna-Bárcenas
, “
Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials
,”
Prog. Polym. Sci.
78
,
139
153
(
2017
).
19.
J. D.
Mota-Morales
,
M. C.
Gutiérrez
,
M. L.
Ferrer
,
R.
Jiménez
,
P.
Santiago
,
I. C.
Sanchez
,
M.
Terrones
,
F.
Del Monte
, and
G.
Luna-Bárcenas
, “
Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents
,”
J. Mater. Chem. A
1
,
3970
(
2013
).
20.
D. V.
Wagle
,
H.
Zhao
, and
G. A.
Baker
, “
Deep eutectic solvents: Sustainable media for nanoscale and functional materials
,”
Acc. Chem. Res.
47
,
2299
2308
(
2014
).
21.
O. S.
Hammond
,
K. J.
Edler
,
D. T.
Bowron
, and
L.
Torrente-Murciano
, “
Deep eutectic-solvothermal synthesis of nanostructured ceria
,”
Nat. Commun.
8
,
14150
(
2017
).
22.
O. S.
Hammond
,
S.
Eslava
,
A. J.
Smith
,
J.
Zhang
, and
K. J.
Edler
, “
Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting
,”
J. Mater. Chem. A
5
,
16189
16199
(
2017
).
23.
M. C.
Gutiérrez
,
D.
Carriazo
,
C. O.
Ania
,
J. B.
Parra
,
M. L.
Ferrer
, and
F.
del Monte
, “
Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture
,”
Energy Environ. Sci.
4
,
3535
(
2011
).
24.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
, “
Structure and nanostructure in ionic liquids
,”
Chem. Rev.
115
,
6357
6426
(
2015
).
25.
S.
Kaur
,
M.
Kumari
, and
H. K.
Kashyap
, “
Microstructure of deep eutectic solvents: Current understanding and challenges
,”
J. Phys. Chem. B
124
,
10601
(
2020
).
26.
C. R.
Ashworth
,
R. P.
Matthews
,
T.
Welton
, and
P. A.
Hunt
, “
Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent
,”
Phys. Chem. Chem. Phys.
18
,
18145
18160
(
2016
).
27.
C. F.
Araujo
,
J. A. P.
Coutinho
,
M. M.
Nolasco
,
S. F.
Parker
,
P. J. A.
Ribeiro-Claro
,
S.
Rudić
,
B. I. G.
Soares
, and
P. D.
Vaz
, “
Inelastic neutron scattering study of reline: Shedding light on the hydrogen bonding network of deep eutectic solvents
,”
Phys. Chem. Chem. Phys.
19
,
17998
18009
(
2017
).
28.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling
,”
Green Chem.
18
,
2736
2744
(
2016
).
29.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution
,”
Angew. Chem. Int. Ed.
129
,
9914
(
2017
).
30.
O. S.
Hammond
,
D. T.
Bowron
,
A. J.
Jackson
,
T.
Arnold
,
A.
Sanchez-Fernandez
,
N.
Tsapatsaris
,
V. G.
Sakai
, and
K. J.
Edler
, “
Resilience of malic acid natural deep eutectic solvent nanostructure to solidification and hydration
,”
J. Phys. Chem. B
121
,
7473
7483
(
2017
).
31.
M.
Gilmore
,
L. M.
Moura
,
A. H.
Turner
,
M.
Swadźba-Kwaśny
,
S. K.
Callear
,
J. A.
McCune
,
O. A.
Scherman
, and
J. D.
Holbrey
, “
A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K
,”
J. Chem. Phys.
148
,
193823
(
2018
).
32.
D. V.
Wagle
,
G. A.
Baker
, and
E.
Mamontov
, “
Differential microscopic mobility of components within a deep eutectic solvent
,”
J. Phys. Chem. Lett.
6
,
2924
2928
(
2015
).
33.
A.
Abbott
,
L.
Aldous
,
N.
Borisenko
,
S.
Coles
,
O.
Fontaine
,
J. D.
Gamarra Garcia
,
R.
Gardas
,
O.
Hammond
,
L. J.
Hardwick
,
P.-H.
Haumesser
,
F.
Hausen
,
C.
Horwood
,
J.
Jacquemin
,
R.
Jones
,
E.
Jónsson
,
A.
Lahiri
,
D.
MacFarlane
,
G.
Marlair
,
B.
May
,
H.
Medhi
,
V. H.
Paschoal
,
J. E. S. J.
Reid
,
T.
Schoetz
,
K.
Tamura
,
M. L.
Thomas
,
S.
Tiwari
,
B.
Uralcan
,
A.
van den Bruinhorst
,
M.
Watanabe
, and
J.
Wishart
, “
Electrochemistry: General discussion
,”
Faraday Discuss.
206
,
405
426
(
2018
).
34.
A. P.
Abbott
,
S. S. M.
Alabdullah
,
A. Y. M.
Al-Murshedi
, and
K. S.
Ryder
, “
Brønsted acidity in deep eutectic solvents and ionic liquids
,”
Faraday Discuss.
206
,
365
377
(
2017
).
35.
C.
D’Agostino
,
L. F.
Gladden
,
M. D.
Mantle
,
A. P.
Abbott
,
E. I.
Ahmed
,
A. Y. M.
Al-Murshedi
, and
R. C.
Harris
, “
Molecular and ionic diffusion in aqueous–deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR
,”
Phys. Chem. Chem. Phys.
17
,
15297
15304
(
2015
).
36.
T.
Murphy
,
S. K.
Callear
,
N.
Yepuri
,
K.
Shimizu
,
M.
Watanabe
,
J. N.
Canongia Lopes
,
T.
Darwish
,
G. G.
Warr
, and
R.
Atkin
, “
Bulk nanostructure of the prototypical ‘good’ and ‘poor’ solvate ionic liquids [Li(G4)][TFSI] and [Li(G4)][NO3]
,”
Phys. Chem. Chem. Phys.
18
,
17224
17236
(
2016
).
37.
L.
Percevault
,
A.
Jani
,
T.
Sohier
,
L.
Noirez
,
L.
Paquin
,
F.
Gauffre
, and
D.
Morineau
, “
Do deep eutectic solvents form uniform mixtures beyond molecular microheterogeneities?
,”
J. Phys. Chem. B
124
,
9126
9135
(
2020
).
38.
S.
McDonald
,
T.
Murphy
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
, “
Amphiphilically nanostructured deep eutectic solvents
,”
J. Phys. Chem. Lett.
9
,
3922
3927
(
2018
).
39.
N.
Rodriguez Rodriguez
,
L.
Machiels
, and
K.
Binnemans
, “
P-toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides
,”
ACS Sustainable Chem. Eng.
7
,
3940
3948
(
2019
).
40.
E. L.
Byrne
and
J. D.
Holbrey
, “
Phenol recovery from aromatic solvents by formation of eutectic liquids with trialkyl-2,3-dihydroxypropylammonium chloride salts
,”
Sustainable Chem.
1
,
49
61
(
2020
).
41.
B.
Hemmateenejad
,
Z.
Shojaeifard
,
M.
Shamsipur
,
K.
Neymeyr
,
M.
Sawall
, and
A.
Mohajeri
, “
Solute-induced perturbation of methanol-water association
,”
RSC Adv.
5
,
71102
71108
(
2015
).
42.
X.
Meng
,
K.
Ballerat-Busserolles
,
P.
Husson
, and
J.-M.
Andanson
, “
Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent
,”
New J. Chem.
40
,
4492
4499
(
2016
).
43.
A. P.
Abbott
,
R. C.
Harris
, and
K. S.
Ryder
, “
Application of hole theory to define ionic liquids by their transport properties
,”
J. Phys. Chem. B
111
,
4910
4913
(
2007
).
44.
H.
Wang
,
S.
Liu
,
Y.
Zhao
,
J.
Wang
, and
Z.
Yu
, “
Insights into the hydrogen bond interactions in deep eutectic solvents composed of choline chloride and polyols
,”
ACS Sustainable Chem. Eng.
7
,
7760
7767
(
2019
).
45.
K.
Mulia
,
F.
Fauzia
, and
E.
Krisanti
, “
Polyalcohols as hydrogen-bonding donors in choline chloride-based deep eutectic solvents for extraction of xanthones from the pericarp of Garcinia mangostana L
,”
Molecules
24
,
636
(
2019
).
46.
Q.
Qu
,
Y.
Lv
,
L.
Liu
,
K. H.
Row
, and
T.
Zhu
, “
Synthesis and characterization of deep eutectic solvents (five hydrophilic and three hydrophobic), and hydrophobic application for microextraction of environmental water samples
,”
Anal. Bioanal. Chem.
411
,
7489
7498
(
2019
).
47.
J. N.
Canongia Lopes
and
A. A. H.
Pádua
, “
Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions
,”
J. Phys. Chem. B
110
,
19586
19592
(
2006
).
48.
J. N.
Canongia Lopes
,
A. A. H.
Pádua
, and
K.
Shimizu
, “
Molecular force field for ionic liquids IV: Trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions
,”
J. Phys. Chem. B
112
,
5039
5046
(
2008
).
49.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
50.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
51.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
52.
A.
Doménech-Carbó
,
S.
Holmwood
,
F.
Di Turo
,
N.
Montoya
,
F. M.
Valle-Algarra
,
H. G. M.
Edwards
, and
M. T.
Doménech-Carbó
, “
Composition and color of Maya blue: Reexamination of literature data based on the dehydroindigo model
,”
J. Phys. Chem. C
123
,
770
782
(
2019
).
53.
J.
Carretero-González
,
E.
Castillo-Martínez
, and
M.
Armand
, “
Highly water-soluble three-redox state organic dyes as bifunctional analytes
,”
Energy Environ. Sci.
9
,
3521
3530
(
2016
).
54.
S.
Kaur
,
A.
Gupta
, and
H. K.
Kashyap
, “
How hydration affects the microscopic structural morphology in a deep eutectic solvent
,”
J. Phys. Chem. B
124
,
2230
2237
(
2020
).
55.
E. J.
Nilsson
,
V.
Alfredsson
,
D. T.
Bowron
, and
K. J.
Edler
, “
A neutron scattering and modelling study of aqueous solutions of tetramethylammonium and tetrapropylammonium bromide
,”
Phys. Chem. Chem. Phys.
18
,
11193
11201
(
2016
).
56.
O. S.
Hammond
,
L.
Moura
,
G.
Level
,
S.
Imberti
,
J. D.
Holbrey
, and
M.
Blesic
, “
Hydration of sulfobetaine dizwitterions as a function of alkyl spacer length
,”
Phys. Chem. Chem. Phys.
22
,
16040
16050
(
2020
).
57.
L.
Sapir
and
D.
Harries
, “
Restructuring a deep eutectic solvent by water: The nanostructure of hydrated choline chloride/urea
,”
J. Chem. Theory Comput.
16
,
3335
3342
(
2020
).
58.
M. E.
Di Pietro
,
O.
Hammond
,
A.
van den Bruinhorst
,
A.
Mannu
,
A.
Padua
,
A.
Mele
, and
M.
Costa Gomes
, “
Connecting chloride solvation with hydration in deep eutectic systems
,”
Phys. Chem. Chem. Phys.
23
,
107
111
(
2021
).
59.
A. A.
Lee
,
C. S.
Perez-Martinez
,
A. M.
Smith
, and
S.
Perkin
, “
Scaling analysis of the screening length in concentrated electrolytes
,”
Phys. Rev. Lett.
119
,
026002
(
2017
).
60.
A. H.
Turner
and
J. D.
Holbrey
, “
Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction
,”
Phys. Chem. Chem. Phys.
21
,
21782
21789
(
2019
).
61.
A.
Faraone
,
D. V.
Wagle
,
G. A.
Baker
,
E. C.
Novak
,
M.
Ohl
,
D.
Reuter
,
P.
Lunkenheimer
,
A.
Loidl
, and
E.
Mamontov
, “
Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent
,”
J. Phys. Chem. B
122
,
1261
1267
(
2018
).
62.
A. K.
Soper
, “
The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure?
,”
ISRN Phys. Chem.
2013
,
279463
.
63.
O.
Hollóczki
,
M.
Macchiagodena
,
H.
Weber
,
M.
Thomas
,
M.
Brehm
,
A.
Stark
,
O.
Russina
,
A.
Triolo
, and
B.
Kirchner
, “
Triphilic ionic-liquid mixtures: Fluorinated and non-fluorinated aprotic ionic-liquid mixtures
,”
ChemPhysChem
16
,
3325
3333
(
2015
).
64.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS—A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
65.
M.
Brehm
,
M.
Thomas
,
S.
Gehrke
, and
B.
Kirchner
, “
TRAVIS—A free analyzer for trajectories from molecular simulation
,”
J. Chem. Phys.
152
,
164105
(
2020
).

Supplementary Material

You do not currently have access to this content.