We present LayerPCM, an extension of the polarizable-continuum model coupled to real-time time-dependent density-functional theory, for an efficient and accurate description of the electrostatic interactions between molecules and multilayered dielectric substrates on which they are physisorbed. The former are modeled quantum-mechanically, while the latter are treated as polarizable continua characterized by their dielectric constants. The proposed approach is purposely designed to simulate complex hybrid heterostructures with nano-engineered substrates including a stack of anisotropic layers. LayerPCM is suitable for describing the polarization-induced renormalization of frontier energy levels of the adsorbates in the static regime. Moreover, it can be reliably applied to simulating laser-induced ultrafast dynamics of molecules through the inclusion of electric fields generated by Fresnel-reflection at the substrate. Depending on the complexity of the underlying layer structure, such reflected fields can assume non-trivial shapes and profoundly affect the dynamics of the photo-excited charge carriers in the molecule. In particular, the interaction with the substrate can give rise to strong delayed fields, which lead to interference effects resembling those of multi-pulse-based spectroscopy. The robustness of the implementation and the above-mentioned features are demonstrated with a number of examples, ranging from intuitive models to realistic systems.

1.
S.
Kubatkin
,
A.
Danilov
,
M.
Hjort
,
J.
Cornil
,
J.-L.
Brédas
,
N.
Stuhr-Hansen
,
P.
Hedegård
, and
T.
Bjørnholm
, “
Single-electron transistor of a single organic molecule with access to several redox states
,”
Nature
425
,
698
701
(
2003
).
2.
K.
Moth-Poulsen
and
T.
Bjørnholm
, “
Molecular electronics with single molecules in solid-state devices
,”
Nat. Nanotechnol.
4
,
551
556
(
2009
).
3.
T.
Nagata
,
S.
Oh
,
Y.
Yamashita
,
H.
Yoshikawa
,
N.
Ikeno
,
K.
Kobayashi
,
T.
Chikyow
, and
Y.
Wakayama
, “
Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure
,”
Appl. Phys. Lett.
102
,
043302
(
2013
).
4.
W.
Feng
,
S.
Rangan
,
Y.
Cao
,
E.
Galoppini
,
R. A.
Bartynski
, and
E.
Garfunkel
, “
Energy level alignment of polythiophene/ZnO hybrid solar cells
,”
J. Mater. Chem. A
2
,
7034
7044
(
2014
).
5.
P.
Schulz
,
L. L.
Kelly
,
P.
Winget
,
H.
Li
,
H.
Kim
,
P. F.
Ndione
,
A. K.
Sigdel
,
J. J.
Berry
,
S.
Graham
,
J.-L.
Brédas
,
A.
Kahn
, and
O. L. A.
Monti
, “
Tailoring electron-transfer barriers for zinc oxide/C60 fullerene interfaces
,”
Adv. Funct. Mater.
24
,
7381
7389
(
2014
).
6.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
, “
Energy-level alignment at organic/metal and organic/organic interfaces
,”
Adv. Mater.
21
,
1450
1472
(
2009
).
7.
A.
Calzolari
,
A.
Ruini
, and
A.
Catellani
, “
Surface effects on catechol/semiconductor interfaces
,”
J. Phys. Chem. C
116
,
17158
17163
(
2012
).
8.
O. T.
Hofmann
,
J.-C.
Deinert
,
Y.
Xu
,
P.
Rinke
,
J.
Stähler
,
M.
Wolf
, and
M.
Scheffler
, “
Large work function reduction by adsorption of a molecule with a negative electron affinity: Pyridine on ZnO (101¯0)
,”
J. Chem. Phys.
139
,
174701
(
2013
).
9.
I.
Lange
,
S.
Reiter
,
M.
Pätzel
,
A.
Zykov
,
A.
Nefedov
,
J.
Hildebrandt
,
S.
Hecht
,
S.
Kowarik
,
C.
Wöll
,
G.
Heimel
, and
D.
Neher
, “
Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers
,”
Adv. Funct. Mater.
24
,
7014
7024
(
2014
).
10.
M.
Timpel
,
M. V.
Nardi
,
S.
Krause
,
G.
Ligorio
,
C.
Christodoulou
,
L.
Pasquali
,
A.
Giglia
,
J.
Frisch
,
B.
Wegner
,
P.
Moras
, and
N.
Koch
, “
Surface modification of ZnO (0001)–Zn with phosphonate-based self-assembled monolayers: Binding modes, orientation, and work function
,”
Chem. Mater.
26
,
5042
5050
(
2014
).
11.
O.
Turkina
,
D.
Nabok
,
A.
Gulans
,
C.
Cocchi
, and
C.
Draxl
, “
Electronic and optical excitations at the pyridine/ZnO(101¯0) hybrid interface
,”
Adv. Theory Simul.
2
,
1800108
(
2019
).
12.
G.
Mattioli
,
S.
Mattiello
,
M.
Sassi
, and
L.
Beverina
, “
Ab initio simulations of interfaces between SAM-modified gold electrodes and n-type or p-type organic semiconductors based on the benzothieno-benzothiophene (BTBT) architecture
,”
J. Phys. Chem. C
124
,
3601
3609
(
2020
).
13.
J. M.
Garcia-Lastra
,
C.
Rostgaard
,
A.
Rubio
, and
K. S.
Thygesen
, “
Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces
,”
Phys. Rev. B
80
,
245427
(
2009
).
14.
F.
Della Sala
,
S.
Blumstengel
, and
F.
Henneberger
, “
Electrostatic-field-driven alignment of organic oligomers on ZnO surfaces
,”
Phys. Rev. Lett.
107
,
146401
(
2011
).
15.
P.
Puschnig
,
P.
Amiri
, and
C.
Draxl
, “
Band renormalization of a polymer physisorbed on graphene investigated by many-body perturbation theory
,”
Phys. Rev. B
86
,
085107
(
2012
).
16.
V.
Despoja
,
I.
Lončarić
,
D. J.
Mowbray
, and
L.
Marušić
, “
Quasiparticle spectra and excitons of organic molecules deposited on substrates: G0W0-BSE approach applied to benzene on graphene and metallic substrates
,”
Phys. Rev. B
88
,
235437
(
2013
).
17.
D.
Nabok
,
B.
Höffling
, and
C.
Draxl
, “
Energy-level alignment at organic/inorganic interfaces from first principles: Example of poly (para-phenylene)/rock-salt ZnO (100)
,”
Chem. Mater.
31
,
7143
7150
(
2019
).
18.
Q.
Fu
,
C.
Cocchi
,
D.
Nabok
,
A.
Gulans
, and
C.
Draxl
, “
Graphene-modulated photo-absorption in adsorbed azobenzene monolayers
,”
Phys. Chem. Chem. Phys.
19
,
6196
6205
(
2017
).
19.
J.
Kerfoot
,
V. V.
Korolkov
,
A. S.
Nizovtsev
,
R.
Jones
,
T.
Taniguchi
,
K.
Watanabe
,
I.
Lesanovsky
,
B.
Olmos
,
N. A.
Besley
,
E.
Besley
, and
P. H.
Beton
, “
Substrate-induced shifts and screening in the fluorescence spectra of supramolecular adsorbed organic monolayers
,”
J. Chem. Phys.
149
,
054701
(
2018
).
20.
C.
Draxl
,
D.
Nabok
, and
K.
Hannewald
, “
Organic/inorganic hybrid materials: Challenges for ab initio methodology
,”
Acc. Chem. Res.
47
,
3225
3232
(
2014
).
21.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional vs many-body Green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
(
2002
).
22.
W.
Gao
,
W.
Xia
,
X.
Gao
, and
P.
Zhang
, “
Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions
,”
Sci. Rep.
6
,
36849
(
2016
).
23.
M.
Govoni
and
G.
Galli
, “
Large scale GW calculations
,”
J. Chem. Theory Comput.
11
,
2680
2696
(
2015
).
24.
M.
Del Ben
,
F. H.
da Jornada
,
A.
Canning
,
N.
Wichmann
,
K.
Raman
,
R.
Sasanka
,
C.
Yang
,
S. G.
Louie
, and
J.
Deslippe
, “
Large-scale GW calculations on pre-exascale HPC systems
,”
Comput. Phys. Commun.
235
,
187
195
(
2019
).
25.
M.
Kim
,
G. J.
Martyna
, and
S.
Ismail-Beigi
, “
Complex-time shredded propagator method for large-scale GW calculations
,”
Phys. Rev. B
101
,
035139
(
2020
).
26.
J.
Wilhelm
,
D.
Golze
,
L.
Talirz
,
J.
Hutter
, and
C. A.
Pignedoli
, “
Toward GW calculations on thousands of atoms
,”
J. Phys. Chem. Lett.
9
,
306
312
(
2018
).
27.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
28.
A.
Klamt
, “
The COSMO and COSMO-RS solvation models
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
699
709
(
2011
).
29.
J.
Li
,
G.
D’Avino
,
I.
Duchemin
,
D.
Beljonne
, and
X.
Blase
, “
Combining the many-body GW formalism with classical polarizable models: Insights on the electronic structure of molecular solids
,”
J. Phys. Chem. Lett.
7
,
2814
2820
(
2016
).
30.
I.
Duchemin
,
C. A.
Guido
,
D.
Jacquemin
, and
X.
Blase
, “
The Bethe–Salpeter formalism with polarisable continuum embedding: Reconciling linear-response and state-specific features
,”
Chem. Sci.
9
,
4430
4443
(
2018
).
31.
J.
Wehner
,
L.
Brombacher
,
J.
Brown
,
C.
Junghans
,
O.
Çaylak
,
Y.
Khalak
,
P.
Madhikar
,
G.
Tirimbò
, and
B.
Baumeier
, “
Electronic excitations in complex molecular environments: Many-body Green’s functions theory in VOTCA-XTP
,”
J. Chem. Theory Comput.
14
,
6253
6268
(
2018
).
32.
G.
Tirimbò
,
V.
Sundaram
,
O.
Çaylak
,
W.
Scharpach
,
J.
Sijen
,
C.
Junghans
,
J.
Brown
,
F. Z.
Ruiz
,
N.
Renaud
,
J.
Wehner
, and
B.
Baumeier
, “
Excited-state electronic structure of molecules using many-body Green’s functions: Quasiparticles and electron–hole excitations with VOTCA-XTP
,”
J. Chem. Phys.
152
,
114103
(
2020
).
33.
A. R.
Kshirsagar
,
G.
D’Avino
,
X.
Blase
,
J.
Li
, and
R.
Poloni
, “
Accurate prediction of the S1 excitation energy in solvated azobenzene derivatives via embedded orbital-tuned Bethe-Salpeter calculations
,”
J. Chem. Theory Comput.
16
,
2021
2027
(
2020
).
34.
O.
Andreussi
,
N. G.
Hörmann
,
F.
Nattino
,
G.
Fisicaro
,
S.
Goedecker
, and
N.
Marzari
, “
Solvent-aware interfaces in continuum solvation
,”
J. Chem. Theory Comput.
15
,
1996
2009
(
2019
).
35.
M. N.
Gjerding
,
L. S. R.
Cavalcante
,
A.
Chaves
, and
K. S.
Thygesen
, “
Efficient ab initio modeling of dielectric screening in 2D van der Waals materials: Including phonons, substrates, and doping
,”
J. Phys. Chem. C
124
,
11609
11616
(
2020
).
36.
A. O.
Dohn
,
E. Ö.
Jónsson
,
G.
Levi
,
J. J.
Mortensen
,
O.
Lopez-Acevedo
,
K. S.
Thygesen
,
K. W.
Jacobsen
,
J.
Ulstrup
,
N. E.
Henriksen
,
K. B.
Møller
, and
H.
Jónsson
, “
Grid-based projector augmented wave (GPAW) implementation of quantum mechanics/molecular mechanics (QM/MM) electrostatic embedding and application to a solvated diplatinum complex
,”
J. Chem. Theory Comput.
13
,
6010
6022
(
2017
).
37.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
38.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
,
1271
1275
(
2010
).
39.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
40.
C.
Zhang
,
C.-P.
Chuu
,
X.
Ren
,
M.-Y.
Li
,
L.-J.
Li
,
C.
Jin
,
M.-Y.
Chou
, and
C.-K.
Shih
, “
Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers
,”
Sci. Adv.
3
,
e1601459
(
2017
).
41.
Y.
Pan
,
S.
Fölsch
,
Y.
Nie
,
D.
Waters
,
Y.-C.
Lin
,
B.
Jariwala
,
K.
Zhang
,
K.
Cho
,
J. A.
Robinson
, and
R. M.
Feenstra
, “
Quantum-confined electronic states arising from the Moiré pattern of MoS2–WSe2 heterobilayers
,”
Nano Lett.
18
,
1849
1855
(
2018
).
42.
N.
Peimyoo
,
H.-Y.
Wu
,
J.
Escolar
,
A.
De Sanctis
,
G.
Prando
,
F.
Vollmer
,
F.
Withers
,
A. C.
Riis-Jensen
,
M. F.
Craciun
,
K. S.
Thygesen
, and
S.
Russo
, “
Engineering dielectric screening for potential-well arrays of excitons in 2D materials
,”
ACS Appl. Mater. Interfaces
12
,
55134
55140
(
2020
).
43.
A. C.
Riis-Jensen
,
J.
Lu
, and
K. S.
Thygesen
, “
Electrically controlled dielectric band gap engineering in a two-dimensional semiconductor
,”
Phys. Rev. B
101
,
121110
(
2020
).
44.
C.
Forsythe
,
X.
Zhou
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Pasupathy
,
P.
Moon
,
M.
Koshino
,
P.
Kim
, and
C. R.
Dean
, “
Band structure engineering of 2D materials using patterned dielectric superlattices
,”
Nat. Nanotechnol.
13
,
566
571
(
2018
).
45.
A.
Chaves
,
J. G.
Azadani
,
H.
Alsalman
,
D. R.
da Costa
,
R.
Frisenda
,
A. J.
Chaves
,
S. H.
Song
,
Y. D.
Kim
,
D.
He
,
J.
Zhou
,
A.
Castellanos-Gomez
,
F. M.
Peeters
,
Z.
Liu
,
C. L.
Hinkle
,
S.-H.
Oh
,
P. D.
Ye
,
S. J.
Koester
,
Y. H.
Lee
,
P.
Avouris
,
X.
Wang
, and
T.
Low
, “
Bandgap engineering of two-dimensional semiconductor materials
,”
npj 2D Mater. Appl.
4
,
29
(
2020
).
46.
W.
Liang
,
C. T.
Chapman
,
F.
Ding
, and
X.
Li
, “
Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model
,”
J. Phys. Chem. A
116
,
1884
1890
(
2012
).
47.
P. D.
Nguyen
,
F.
Ding
,
S. A.
Fischer
,
W.
Liang
, and
X.
Li
, “
Solvated first-principles excited-state charge-transfer dynamics with time-dependent polarizable continuum model and solvent dielectric relaxation
,”
J. Phys. Chem. Lett.
3
,
2898
2904
(
2012
).
48.
S.
Pipolo
,
S.
Corni
, and
R.
Cammi
, “
The cavity electromagnetic field within the polarizable continuum model of solvation: An application to the real-time time dependent density functional theory
,”
Comput. Theory Chem.
1040-1041
,
112
119
(
2014
).
49.
L.
Onsager
, “
Electric moments of molecules in liquids
,”
J. Am. Chem. Soc.
58
,
1486
1493
(
1936
).
50.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
51.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
, “
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
,”
J. Chem. Phys.
107
,
3032
3041
(
1997
).
52.
E.
Cancès
and
B.
Mennucci
, “
New applications of integral equations methods for solvation continuum models: Ionic solutions and liquid crystals
,”
J. Math. Chem.
23
,
309
326
(
1998
).
53.
R. A.
Marcus
, “
On the theory of oxidation-reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
,
966
978
(
1956
).
54.
M. A.
Aguilar
,
F. J.
Olivares del Valle
, and
J.
Tomasi
, “
Nonequilibrium solvation: An ab initio quantum-mechanical method in the continuum cavity model approximation
,”
J. Chem. Phys.
98
,
7375
7384
(
1993
).
55.
R.
Cammi
and
J.
Tomasi
, “
Nonequilibrium solvation theory for the polarizable continuum model: A new formulation at the SCF level with application to the case of the frequency-dependent linear electric response function
,”
Int. J. Quantum Chem.
56
,
465
474
(
1995
).
56.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
, “
Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level
,”
J. Chem. Phys.
109
,
2798
2807
(
1998
).
57.
F.
Ingrosso
,
B.
Mennucci
, and
J.
Tomasi
, “
Quantum mechanical calculations coupled with a dynamical continuum model for the description of dielectric relaxation: Time dependent Stokes shift of coumarin C153 in polar solvents
,”
J. Mol. Liq.
108
,
21
46
(
2003
).
58.
M.
Caricato
,
F.
Ingrosso
,
B.
Mennucci
, and
J.
Tomasi
, “
A time-dependent polarizable continuum model: Theory and application
,”
J. Chem. Phys.
122
,
154501
(
2005
).
59.
F.
Ding
,
D. B.
Lingerfelt
,
B.
Mennucci
, and
X.
Li
, “
Time-dependent non-equilibrium dielectric response in QM/continuum approaches
,”
J. Chem. Phys.
142
,
034120
(
2015
).
60.
S.
Corni
,
S.
Pipolo
, and
R.
Cammi
, “
Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: Application to real-time TDDFT
,”
J. Phys. Chem. A
119
,
5405
5416
(
2015
).
61.
S.
Pipolo
and
S.
Corni
, “
Real-time description of the electronic dynamics for a molecule close to a plasmonic nanoparticle
,”
J. Phys. Chem. C
120
,
28774
28781
(
2016
).
62.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
, “
Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications
,”
J. Phys. Chem. B
101
,
10506
10517
(
1997
).
63.
S.
Corni
and
J.
Tomasi
, “
Lifetimes of electronic excited states of a molecule close to a metal surface
,”
J. Chem. Phys.
118
,
6481
6494
(
2003
).
64.
S.
Corni
and
J.
Tomasi
, “
Enhanced response properties of a chromophore physisorbed on a metal particle
,”
J. Chem. Phys.
114
,
3739
3751
(
2001
).
65.
A.
Delgado
,
S.
Corni
, and
G.
Goldoni
, “
Modeling opto-electronic properties of a dye molecule in proximity of a semiconductor nanoparticle
,”
J. Chem. Phys.
139
,
024105
(
2013
).
66.
L.
Frediani
,
R.
Cammi
,
S.
Corni
, and
J.
Tomasi
, “
A polarizable continuum model for molecules at diffuse interfaces
,”
J. Chem. Phys.
120
,
3893
3907
(
2004
).
67.
L.
Frediani
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum-mechanical continuum solvation study of the polarizability of halides at the water/air interface
,”
J. Phys. Chem. B
108
,
13796
13806
(
2004
).
68.
S.
Corni
and
J.
Tomasi
, “
Excitation energies of a molecule close to a metal surface
,”
J. Chem. Phys.
117
,
7266
7278
(
2002
).
69.
N. M.
Temme
,
Special Functions: An Introduction to the Classical Functions of Mathematical Physics
(
Wiley
,
New York
,
1996
).
70.
R.
Fuchs
and
R. G.
Barrera
, “
Dynamical response of a dipole near the surface of a nonlocal metal
,”
Phys. Rev. B
24
,
2940
2950
(
1981
).
71.
P.
Yeh
, “
Electromagnetic propagation in birefringent layered media
,”
J. Opt. Soc. Am.
69
,
742
756
(
1979
).
72.
P.
Yeh
, “
Optics of anisotropic layered media: A new 4 × 4 matrix algebra
,”
Surf. Sci.
96
,
41
53
(
1980
).
73.
P.
Puschnig
and
C.
Ambrosch-Draxl
, “
Atomistic modeling of optical properties of thin films
,”
Adv. Eng. Mater.
8
,
1151
1155
(
2006
).
74.
C.
Vorwerk
,
C.
Cocchi
, and
C.
Draxl
, “
LayerOptics: Microscopic modeling of optical coefficients in layered materials
,”
Comput. Phys. Commun.
201
,
119
125
(
2016
).
75.
N. C.
Passler
and
A.
Paarmann
, “
Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: Study of surface phonon polaritons in polar dielectric heterostructures
,”
J. Opt. Soc. Am. B
34
,
2128
2139
(
2017
).
76.
N. C.
Passler
,
M.
Jeannin
, and
A.
Paarmann
, “
Layer-resolved absorption of light in arbitrarily anisotropic heterostructures
,”
Phys. Rev. B
101
,
165425
(
2020
).
77.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
78.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
79.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
80.
G.
Gil
,
S.
Pipolo
,
A.
Delgado
,
C. A.
Rozzi
, and
S.
Corni
, “
Nonequilibrium solvent polarization effects in real-time electronic dynamics of solute molecules subject to time-dependent electric fields: A new feature of the polarizable continuum model
,”
J. Chem. Theory Comput.
15
,
2306
2319
(
2019
).
81.
J.
Krumland
,
A. M.
Valencia
,
S.
Pittalis
,
C. A.
Rozzi
, and
C.
Cocchi
, “
Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
,”
J. Chem. Phys.
153
,
054106
(
2020
).
82.
M.
Marques
,
A.
Castro
,
G. F.
Bertsch
, and
A.
Rubio
, “
Octopus: A first-principles tool for excited electron–ion dynamics
,”
Comput. Phys. Commun.
151
,
60
78
(
2003
).
83.
A.
Castro
,
H.
Appel
,
M.
Oliveira
,
C. A.
Rozzi
,
X.
Andrade
,
F.
Lorenzen
,
M. A. L.
Marques
,
E. K. U.
Gross
, and
A.
Rubio
, “
Octopus: A tool for the application of time-dependent density functional theory
,”
Phys. Status Solidi B
243
,
2465
2488
(
2006
).
84.
X.
Andrade
,
D.
Strubbe
,
U.
De Giovannini
,
A. H.
Larsen
,
M. J. T.
Oliveira
,
J.
Alberdi-Rodriguez
,
A.
Varas
,
I.
Theophilou
,
N.
Helbig
,
M. J.
Verstraete
,
L.
Stella
,
F.
Nogueira
,
A.
Aspuru-Guzik
,
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems
,”
Phys. Chem. Chem. Phys.
17
,
31371
31396
(
2015
).
85.
N.
Tancogne-Dejean
,
M. J. T.
Oliveira
,
X.
Andrade
,
H.
Appel
,
C. H.
Borca
,
G.
Le Breton
,
F.
Buchholz
,
A.
Castro
,
S.
Corni
,
A. A.
Correa
,
U.
De Giovannini
,
A.
Delgado
,
F. G.
Eich
,
J.
Flick
,
G.
Gil
,
A.
Gomez
,
N.
Helbig
,
H.
Hübener
,
R.
Jestädt
,
J.
Jornet-Somoza
,
A. H.
Larsen
,
I. V.
Lebedeva
,
M.
Lüders
,
M. A. L.
Marques
,
S. T.
Ohlmann
,
S.
Pipolo
,
M.
Rampp
,
C. A.
Rozzi
,
D. A.
Strubbe
,
S. A.
Sato
,
C.
Schäfer
,
I.
Theophilou
,
A.
Welden
, and
A.
Rubio
, “
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
,”
J. Chem. Phys.
152
,
124119
(
2020
).
86.
A.
Delgado
,
S.
Corni
,
S.
Pittalis
, and
C. A.
Rozzi
, “
Modeling solvation effects in real-space and real-time within density functional approaches
,”
J. Chem. Phys.
143
,
144111
(
2015
).
87.
W.
Ekardt
, “
Size-dependent photoabsorption and photoemission of small metal particles
,”
Phys. Rev. B
31
,
6360
6370
(
1985
).
88.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
89.
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Propagators for the time-dependent Kohn–Sham equations
,”
J. Chem. Phys.
121
,
3425
3433
(
2004
).
90.
J. L.
Pascual-Ahuir
and
E.
Silla
, “
GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set
,”
J. Comput. Chem.
11
,
1047
1060
(
1990
).
91.
V.
Barone
,
M.
Cossi
, and
J.
Tomasi
, “
A new definition of cavities for the computation of solvation free energies by the polarizable continuum model
,”
J. Chem. Phys.
107
,
3210
3221
(
1997
).
92.
M.
Abramowitz
,
Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables
(
Dover Publications, Inc.
,
1974
).
93.
C. J. R.
Sheppard
, “
Approximate calculation of the reflection coefficient from a stratified medium
,”
Pure Appl. Opt.: J. Eur. Opt. Soc., Part A
4
,
665
669
(
1995
).
94.
A.
Laturia
,
M. L.
Van de Put
, and
W. G.
Vandenberghe
, “‘
Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk
,’”
npj 2D Mater. Appl.
2
,
6
(
2018
).
95.
I. H.
Malitson
, “
Interspecimen comparison of the refractive index of fused silica
,”
J. Opt. Soc. Am.
55
,
1205
1209
(
1965
).
96.
D. E.
Aspnes
and
A. A.
Studna
, “
Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV
,”
Phys. Rev. B
27
,
985
1009
(
1983
).
97.
B.
Jagoda-Cwiklik
,
P.
Slavíček
,
L.
Cwiklik
,
D.
Nolting
,
B.
Winter
, and
P.
Jungwirth
, “
Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution
,”
J. Phys. Chem. A
112
,
3499
3505
(
2008
).
98.
P.
Slavíček
,
B.
Winter
,
M.
Faubel
,
S. E.
Bradforth
, and
P.
Jungwirth
, “
Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations
,”
J. Am. Chem. Soc.
131
,
6460
6467
(
2009
).
99.
Z.-F.
Liu
,
D. A.
Egger
,
S.
Refaely-Abramson
,
L.
Kronik
, and
J. B.
Neaton
, “
Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional
,”
J. Chem. Phys.
146
,
092326
(
2017
).
100.
J. B.
Neaton
,
M. S.
Hybertsen
, and
S. G.
Louie
, “
Renormalization of molecular electronic levels at metal-molecule interfaces
,”
Phys. Rev. Lett.
97
,
216405
(
2006
).
101.
K. S.
Thygesen
and
A.
Rubio
, “
Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes
,”
Phys. Rev. Lett.
102
,
046802
(
2009
).
102.
C.
Cocchi
and
C.
Draxl
, “
Optical spectra from molecules to crystals: Insight from many-body perturbation theory
,”
Phys. Rev. B
92
,
205126
(
2015
).
103.
E.
Coccia
and
S.
Corni
, “
Role of coherence in the plasmonic control of molecular absorption
,”
J. Chem. Phys.
151
,
044703
(
2019
).
104.
G.
Dall’Osto
,
E.
Coccia
,
C. A.
Guido
, and
S.
Corni
, “
Investigating ultrafast two-pulse experiments on single DNQDI fluorophores: A stochastic quantum approach
,”
Phys. Chem. Chem. Phys.
22
,
16734
16746
(
2020
).
105.
N. T.
Maitra
, “
Perspective: Fundamental aspects of time-dependent density functional theory
,”
J. Chem. Phys.
144
,
220901
(
2016
).
106.
J. I.
Fuks
,
N.
Helbig
,
I. V.
Tokatly
, and
A.
Rubio
, “
Nonlinear phenomena in time-dependent density-functional theory: What Rabi oscillations can teach us
,”
Phys. Rev. B
84
,
075107
(
2011
).
107.
S.
Raghunathan
and
M.
Nest
, “
Critical examination of explicitly time-dependent density functional theory for coherent control of dipole switching
,”
J. Chem. Theory Comput.
7
,
2492
2497
(
2011
).
108.
S.
Raghunathan
and
M.
Nest
, “
Coherent control and time-dependent density functional theory: Towards creation of wave packets by ultrashort laser pulses
,”
J. Chem. Phys.
136
,
064104
(
2012
).
You do not currently have access to this content.