Understanding the dynamic disorder behind a process, i.e., the dynamic effect of fluctuations that occur on a timescale slower or comparable with the timescale of the process, is essential for elucidating the dynamics and kinetics of complicated molecular processes in biomolecules and liquids. Despite numerous theoretical studies of single-molecule kinetics, our microscopic understanding of dynamic disorder remains limited. In the present study, we investigate the microscopic aspects of dynamic disorder in the isomerization dynamics of the Cys14–Cys38 disulfide bond in the protein bovine pancreatic trypsin inhibitor, which has been observed by nuclear magnetic resonance. We use a theoretical model with a stochastic transition rate coefficient, which is calculated from the 1-ms-long time molecular dynamics trajectory obtained by Shaw et al. [Science 330, 341–346 (2010)]. The isomerization dynamics are expressed by the transitions between coarse-grained states consisting of internal states, i.e., conformational sub-states. In this description, the rate for the transition from the coarse-grained states is stochastically modulated due to fluctuations between internal states. We examine the survival probability for the conformational transitions from a coarse-grained state using a theoretical model, which is a good approximation to the directly calculated survival probability. The dynamic disorder changes from a slow modulation limit to a fast modulation limit depending on the aspects of the coarse-grained states. Our analysis of the rate modulations behind the survival probability, in relation to the fluctuations between internal states, reveals the microscopic origin of dynamic disorder.

1.
B.
Bagchi
,
Molecular Relaxation in Liquids
(
Oxford University Press
,
2012
).
2.
K.
Henzler-Wildman
and
D.
Kern
, “
Dynamic personalities of proteins
,”
Nature
450
,
964
972
(
2007
).
3.
R.
Zwanzig
, “
Rate processes with dynamical disorder
,”
Acc. Chem. Res.
23
,
148
152
(
1990
).
4.
R.
Zwanzig
, “
Dynamical disorder: Passage through a fluctuating bottleneck
,”
J. Chem. Phys.
97
,
3587
3589
(
1992
).
5.
L.
Edman
,
U.
Mets
, and
R.
Rigler
, “
Conformational transitions monitored for single molecules in solution
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
6710
6715
(
1996
).
6.
Y.
Jia
,
A.
Sytnik
 et al, “
Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
7932
7936
(
1997
).
7.
T.
Ha
,
A. Y.
Ting
 et al, “
Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein
,”
Chem. Phys.
247
,
107
118
(
1999
).
8.
W. E.
Moerner
, “
Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule
,”
Science
265
,
46
53
(
1994
).
9.
S. C.
Kou
and
X. S.
Xie
, “
Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
,”
Phys. Rev. Lett.
93
,
180603-1
180603-4
(
2004
).
10.
W.
Min
,
G.
Luo
 et al, “
Observation of a power-law memory kernel for fluctuations within a single protein molecule
,”
Phys. Rev. Lett.
94
,
198302-1
198302-4
(
2005
).
11.
B. P.
English
,
W.
Min
 et al, “
Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited
,”
Nat. Chem. Biol.
2
,
87
94
(
2006
).
12.
M.
Pirchi
,
G.
Ziv
 et al, “
Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein
,”
Nat. Commun.
2
,
493
(
2011
).
13.
I.
Grossman
,
H. Y.
Aviram
 et al, “
Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay
,”
Nat. Commun.
6
,
8624
(
2015
).
14.
E.
Lerner
,
T.
Cordes
 et al, “
Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer
,”
Science
359
,
eaan1133
(
2018
).
15.
H.
Frauenfelder
,
S. G.
Sligar
, and
P. G.
Wolynes
, “
The energy landscapes and motions of proteins
,”
Science
254
,
1598
1603
(
1991
).
16.
E.
Geva
and
J. L.
Skinner
, “
Two-state dynamics of single biomolecules in solution
,”
Chem. Phys. Lett.
288
,
225
229
(
1998
).
17.
A. M.
Berezhkovskii
,
A.
Szabo
 et al, “
Reaction dynamics on a thermally fluctuating potential
,”
J. Chem. Phys.
111
,
9952
9957
(
1999
).
18.
N.
Agmon
, “
Conformational cycle of a single working enzyme
,”
J. Phys. Chem. B
104
,
7830
7834
(
2000
).
19.
S.
Yang
and
J.
Cao
, “
Two-event echos in single-molecule kinetics: A signature of conformational fluctuations
,”
J. Phys. Chem. B
105
,
6536
6549
(
2001
).
20.
S.
Yang
and
J.
Cao
, “
Direct measurements of memory effects in single-molecule kinetics
,”
J. Chem. Phys.
117
,
10996
11009
(
2002
).
21.
V.
Barsegov
,
V.
Chernyak
, and
S.
Mukamel
, “
Multitime correlation functions for single molecule kinetics with fluctuating bottlenecks
,”
J. Chem. Phys.
116
,
4240
4251
(
2002
).
22.
D. J.
Bicout
and
A.
Szabo
, “
Escape through a bottleneck undergoing non-Markovian fluctuations
,”
J. Chem. Phys.
108
,
5491
5497
(
1998
).
23.
S.
Chaudhury
and
B. J.
Cherayil
, “
Dynamic disorder in single-molecule Michaelis-Menten kinetics: The reaction-diffusion formalism in the Wilemski-Fixman approximation
,”
J. Chem. Phys.
127
,
105103-1
105103-8
(
2007
).
24.
J.
Wang
and
P.
Wolynes
, “
Intermittency of single molecule reaction dynamics in fluctuating environments
,”
Phys. Rev. Lett.
74
,
4317
4320
(
1995
).
25.
Theory and Evaluation of Single-Molecule Signals
, edited by
E.
Barkai
,
F.
Brown
,
M.
Orrit
, and
H.
Yang
(
World Scientific
,
2008
).
26.
S. C.
Kou
,
B. J.
Cherayil
 et al, “
Single-molecule Michaelis–Menten equations
,”
J. Phys. Chem. B
109
,
19068
19081
(
2005
).
27.
S.
Chaudhury
,
J.
Cao
, and
N. A.
Sinitsyn
, “
Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics
,”
J. Phys. Chem. B
117
,
503
509
(
2013
).
28.
J. B.
Witkoskie
and
J.
Cao
, “
Single molecule kinetics. I. Theoretical analysis of indicators
,”
J. Chem. Phys.
121
,
6361
6372
(
2004
).
29.
J. B.
Witkoskie
and
J.
Cao
, “
Single molecule kinetics. II. Numerical Bayesian approach
,”
J. Chem. Phys.
121
,
6373
6379
(
2004
).
30.
M. A.
Berg
and
J. R.
Darvin
, “
Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions
,”
J. Chem. Phys.
145
,
054119-1
054119-9
(
2016
).
31.
K.
Ishii
and
T.
Tahara
, “
Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle
,”
J. Phys. Chem. B
117
,
11414
11422
(
2013
).
32.
J.
Ono
,
S.
Takada
, and
S.
Saito
, “
Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase
,”
J. Chem. Phys.
142
,
212404-1
212404-13
(
2015
).
33.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
2014
).
34.
D. E.
Shaw
,
R. O.
Dror
 et al, “
Millisecond-scale molecular dynamics simulations on Anton
,” in
Proceedings of the ACM/IEEE Conference on Supercomputing (SC09)
(
ACM Press
,
New York
,
2009
).
35.
D. E.
Shaw
,
P.
Maragakis
 et al, “
Atomic-level characterization of the structural dynamics of proteins
,”
Science
330
,
341
346
(
2010
).
36.
Y.
Xue
,
J. M.
Ward
 et al, “
Microsecond time-scale conformational exchange in proteins: Using long molecular dynamics trajectory to simulate NMR relaxation dispersion data
,”
J. Am. Chem. Soc.
134
,
2555
2562
(
2012
).
37.
S.
Olsson
and
F.
Noé
, “
Mechanistic models of chemical exchange induced relaxation in protein NMR
,”
J. Am. Chem. Soc.
139
,
200
210
(
2017
).
38.
B.
Halle
and
F.
Persson
, “
Analysis of protein dynamics simulations by a stochastic point process approach
,”
J. Chem. Theory Comput.
9
,
2838
2848
(
2013
).
39.
F.
Persson
and
B.
Halle
, “
Transient access to the protein interior: Simulation versus NMR
,”
J. Am. Chem. Soc.
135
,
8735
8748
(
2013
).
40.
D.
Long
and
R.
Brüschweiler
, “
Atomistic kinetic model for population shift and allostery in biomolecules
,”
J. Am. Chem. Soc.
133
,
18999
19005
(
2011
).
41.
T.
Mori
and
S.
Saito
, “
Dynamic heterogeneity in the folding/unfolding transitions of FiP35
,”
J. Chem. Phys.
142
,
135101-1
135101-7
(
2015
).
42.
T.
Mori
and
S.
Saito
, “
Molecular mechanism behind the fast folding/unfolding transitions of villin headpiece subdomain: Hierarchy and heterogeneity
,”
J. Phys. Chem. B
120
,
11683
11691
(
2016
).
43.
M.
Marquart
,
J.
Huber
 et al, “
The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors
,”
Acta Crystallogr., Sect. B
39
,
480
490
(
1983
).
44.
M. J.
Grey
,
C.
Wang
, and
A. G.
Palmer
, “
Disulfide bond isomerization in basic pancreatic trypsin inhibitor: Multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling
,”
J. Am. Chem. Soc.
125
,
14324
14335
(
2003
).
45.

Here, the trajectory data from 136 870 to 4 099 814 frames are utilized for the estimation.

46.

CPPTRAJ software is utilized to compute the trajectory of dihedral angles.

47.
D. R.
Roe
and
T. E.
Cheatham
 III
, “
PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
,”
J. Chem. Theory Comput.
9
,
3084
3095
(
2013
).
48.
M. A.
Berg
and
H.
Kaur
, “
Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics
,”
J. Chem. Phys.
146
,
054104-1
054104-16
(
2017
).
49.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
, “
A novel path sampling method for the calculation of rate constants
,”
J. Chem. Phys.
118
,
7762
7774
(
2003
).
50.
T. S.
van Erp
,
M.
Moqadam
 et al, “
Analyzing complex reaction mechanisms using path sampling
,”
J. Chem. Theory Comput.
12
,
5398
5410
(
2016
).
51.
E.
Suarez
,
S.
Lettieri
 et al, “
Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
,”
J. Chem. Theory Comput.
10
,
2658
2667
(
2014
).
52.
E.
Suarez
,
A. J.
Pratt
 et al, “
Estimating first-passage time distributions from weighted ensemble simulations and non-Markovian analyses
,”
Protien Sci.
25
,
67
78
(
2016
).

Supplementary Material

You do not currently have access to this content.