We devise an efficient scheme to determine vibrational properties from Path Integral Molecular Dynamics (PIMD) simulations. The method is based on zero-time Kubo-transformed correlation functions and captures the anharmonicity of the potential due to both temperature and quantum effects. Using analytical derivations and numerical calculations on toy-model potentials, we show that two different estimators built upon PIMD correlation functions fully characterize the phonon spectra and the anharmonicity strength. The first estimator is associated with the force–force quantum correlators and, in the weak anharmonic regime, yields reliable zero-point motion frequencies and thermodynamic properties of the quantum system. The second one is instead connected to displacement–displacement correlators and accurately probes the lowest-energy phonon excitations, regardless of the anharmonicity strength of the system. We also prove that the use of generalized eigenvalue equations, in place of the standard normal mode equations, leads to a significant speed-up in the PIMD phonon calculations, both in terms of faster convergence rate and smaller time step bias. Within this framework, using ab initio PIMD simulations, we compute phonon dispersions of diamond and of the high-pressure I41/amd phase of atomic hydrogen. We find that in the latter case, the anharmonicity is stronger than previously estimated and yields a sizeable red-shift in the vibrational spectrum of atomic hydrogen.

1.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
1954
).
2.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
, Corrected Republication ed. (
Dover Publications
,
New York
,
1980
), reprint of the 1955 ed. published by McGraw-Hill, New York.
3.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
,
1175
1204
(
1957
).
4.
G. R.
Stewart
, “
Unconventional superconductivity
,”
Adv. Phys.
66
,
75
196
(
2017
).
5.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
, “
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
,”
Nature
525
,
73
76
(
2015
).
6.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
, “
Superconductivity at 250 k in lanthanum hydride under high pressures
,”
Nature
569
,
528
531
(
2019
).
7.
B.
Fultz
, “
Vibrational thermodynamics of materials
,”
Prog. Mater. Sci.
55
,
247
352
(
2010
).
8.
L.
Paulatto
,
F.
Mauri
, and
M.
Lazzeri
, “
Anharmonic properties from a generalized third-order ab initio approach: Theory and applications to graphite and graphene
,”
Phys. Rev. B
87
,
214303
(
2013
).
9.
M.
Schmitz
and
P.
Tavan
, “
Vibrational spectra from atomic fluctuations in dynamics simulations. I. Theory, limitations, and a sample application
,”
J. Chem. Phys.
121
,
12233
12246
(
2004
).
10.
M.
Martinez
,
M.-P.
Gaigeot
,
D.
Borgis
, and
R.
Vuilleumier
, “
Extracting effective normal modes from equilibrium dynamics at finite temperature
,”
J. Chem. Phys.
125
,
144106
(
2006
).
11.
O.
Hellman
,
I. A.
Abrikosov
, and
S. I.
Simak
, “
Lattice dynamics of anharmonic solids from first principles
,”
Phys. Rev. B
84
,
180301
(
2011
).
12.
O.
Hellman
,
P.
Steneteg
,
I. A.
Abrikosov
, and
S. I.
Simak
, “
Temperature dependent effective potential method for accurate free energy calculations of solids
,”
Phys. Rev. B
87
,
104111
(
2013
).
13.
E. N.
Koukaras
,
G.
Kalosakas
,
C.
Galiotis
, and
K.
Papagelis
, “
Phonon properties of graphene derived from molecular dynamics simulations
,”
Sci. Rep.
5
,
12923
(
2015
).
14.
L. T.
Kong
, “
Phonon dispersion measured directly from molecular dynamics simulations
,”
Comput. Phys. Commun.
182
,
2201
2207
(
2011
).
15.
Throughout this work we refer to phonons for both molecules and crystal systems.
16.
H.
Dammak
,
Y.
Chalopin
,
M.
Laroche
,
M.
Hayoun
, and
J.-J.
Greffet
, “
Quantum thermal bath for molecular dynamics simulation
,”
Phys. Rev. Lett.
103
,
190601
(
2009
).
17.
H.
Dammak
,
E.
Antoshchenkova
,
M.
Hayoun
, and
F.
Finocchi
, “
Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations
,”
J. Phys.: Condens. Matter
24
,
435402
(
2012
).
18.
Y.
Bronstein
,
P.
Depondt
,
F.
Finocchi
, and
A. M.
Saitta
, “
Quantum-driven phase transition in ice described via an efficient Langevin approach
,”
Phys. Rev. B
89
,
214101
(
2014
).
19.
Y.
Bronstein
,
P.
Depondt
,
L.
Bove
,
R.
Gaál
,
A.
Saitta
, and
F.
Finocchi
, “
Quantum versus classical protons in pure and salty ice under pressure
,”
Phys. Rev. B
93
,
024104
(
2016
).
20.
M.
Ben‐Nun
and
R. D.
Levine
, “
On the zero point energy in classical trajectory computations
,”
J. Chem. Phys.
105
,
8136
8141
(
1996
).
21.
E.
Mangaud
,
S.
Huppert
,
T.
Plé
,
P.
Depondt
,
S.
Bonella
, and
F.
Finocchi
, “
The fluctuation–dissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations
,”
J. Chem. Theory Comput.
15
,
2863
2880
(
2019
).
22.
D. J.
Hooton
, “
LI. A new treatment of anharmonicity in lattice thermodynamics: I
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
46
,
422
432
(
1955
).
23.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
, “
Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides
,”
Phys. Rev. B
89
,
064302
(
2014
).
24.
R.
Bianco
,
I.
Errea
,
L.
Paulatto
,
M.
Calandra
, and
F.
Mauri
, “
Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation
,”
Phys. Rev. B
96
,
014111
(
2017
).
25.
P.
Souvatzis
,
O.
Eriksson
,
M. I.
Katsnelson
, and
S. P.
Rudin
, “
Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory
,”
Phys. Rev. Lett.
100
,
095901
(
2008
).
26.
N. R.
Werthamer
, “
Self-consistent phonon formulation of anharmonic lattice dynamics
,”
Phys. Rev. B
1
,
572
581
(
1970
).
27.
T.
Tadano
and
S.
Tsuneyuki
, “
Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants
,”
Phys. Rev. B
92
,
054301
(
2015
).
28.
G.
Carleo
,
S.
Moroni
, and
S.
Baroni
, “
Zero-temperature dynamics of solid 4He from quantum Monte Carlo simulations
,”
Phys. Rev. B
80
,
094301
(
2009
).
29.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties
,”
J. Chem. Phys.
100
,
5093
5105
(
1994
).
30.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics
,”
J. Chem. Phys.
101
,
6168
6183
(
1994
).
31.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
32.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Efficient stochastic thermostatting of path integral molecular dynamics
,”
J. Chem. Phys.
133
,
124104
(
2010
).
33.
F.
Mouhat
,
S.
Sorella
,
R.
Vuilleumier
,
A. M.
Saitta
, and
M.
Casula
, “
Fully quantum description of the Zundel ion: Combining variational quantum Monte Carlo with path integral Langevin dynamics
,”
J. Chem. Theory Comput.
13
,
2400
2417
(
2017
).
34.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
, “
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
,”
J. Chem. Phys.
134
,
084104
(
2011
).
35.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
36.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
37.
M.
Parrinello
and
A.
Rahman
, “
Study of an F center in molten KCl
,”
J. Chem. Phys.
80
,
860
867
(
1984
).
38.
M.
Rossi
,
V.
Kapil
, and
M.
Ceriotti
, “
Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation
,”
J. Chem. Phys.
148
,
102301
(
2018
).
39.
P.
Giannozzi
 et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
40.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
41.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
42.
T. J. H.
Hele
, “
Thermal quantum time-correlation functions from classical-like dynamics
,”
Mol. Phys.
115
,
1435
1462
(
2017
).
43.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
44.
A.
Witt
,
S. D.
Ivanov
,
M.
Shiga
,
H.
Forbert
, and
D.
Marx
, “
On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy
,”
J. Chem. Phys.
130
,
194510
(
2009
).
45.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
, “
Boltzmann-conserving classical dynamics in quantum time-correlation functions: ‘Matsubara dynamics
,’”
J. Chem. Phys.
142
,
134103
(
2015
).
46.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
, “
Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics
,”
J. Chem. Phys.
142
,
191101
(
2015
).
47.
T. J. H.
Hele
, “
On the relation between thermostatted ring-polymer molecular dynamics and exact quantum dynamics
,”
Mol. Phys.
114
,
1461
1471
(
2016
).
48.
T.
Yamamoto
, “
Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase
,”
J. Chem. Phys.
33
,
281
289
(
1960
).
49.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
413
(
2013
).
50.
C.
Campañá
and
M. H.
Müser
, “
Practical green’s function approach to the simulation of elastic semi-infinite solids
,”
Phys. Rev. B
74
,
075420
(
2006
).
51.
K.
Parlinski
,
Z. Q.
Li
, and
Y.
Kawazoe
, “
First-principles determination of the soft mode in cubic ZrO2
,”
Phys. Rev. Lett.
78
,
4063
4066
(
1997
).
52.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
53.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
,”
Phys. Rev. B
55
,
10355
10368
(
1997
).
54.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
562
(
2001
).
55.
A.
Pereverzev
and
T. D.
Sewell
, “
Obtaining the hessian from the force covariance matrix: Application to crystalline explosives PETN and RDX
,”
J. Chem. Phys.
142
,
134110
(
2015
).
56.
M.-P.
Gaigeot
,
M.
Martinez
, and
R.
Vuilleumier
, “
Infrared spectroscopy in the gas and liquid phase from first principle molecular dynamics simulations: Application to small peptides
,”
Mol. Phys.
105
,
2857
2878
(
2007
).
57.
B. R.
Brooks
,
D.
Janežič
, and
M.
Karplus
, “
Harmonic analysis of large systems. I. Methodology
,”
J. Comput. Chem.
16
,
1522
1542
(
1995
).
58.
R. A.
Wheeler
,
H.
Dong
, and
S. E.
Boesch
, “
Quasiharmonic vibrations of water, water dimer, and liquid water from principal component analysis of quantum or QM/MM trajectories
,”
ChemPhysChem
4
,
382
384
(
2003
).
59.
U.
Aseginolaza
,
T.
Cea
,
R.
Bianco
,
L.
Monacelli
,
M.
Calandra
,
A.
Bergara
,
F.
Mauri
, and
I.
Errea
, “
Bending rigidity and sound propagation in graphene
,” arXiv:2005.12047 (
2020
).
60.
L.
Monacelli
,
R.
Bianco
,
M.
Cherubini
,
M.
Calandra
,
I.
Errea
, and
F.
Mauri
, “
The stochastic self-consistent harmonic approximation: Calculating vibrational properties of materials with full quantum and anharmonic effects
,” (published online
2021
).
61.
R.
Ramírez
and
T.
López-Ciudad
, “
The Schrödinger formulation of the Feynman path centroid density
,”
J. Chem. Phys.
111
,
3339
3348
(
1999
).
62.
R.
Ramírez
and
T.
López-Ciudad
, “
Low lying vibrational excitation energies from equilibrium path integral simulations
,”
J. Chem. Phys.
115
,
103
114
(
2001
).
63.

However, in molecular calculations, one has to define a proper frame for appropriate internal coordinates.

64.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
, “
Space groups in reciprocal space and representations
,” in
Group Theory
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2008
), pp.
209
237
.
65.
To do that we exploit the Quantum Espresso tool q2qstar.x.
66.
W.
Kolos
and
L.
Wolniewicz
, “
Potential energy curves for the x1σg+, b3σu+, and c1Πu states of the hydrogen molecule
,”
J. Chem. Phys.
43
,
2429
2441
(
1965
).
67.
E.
Matsushita
and
T.
Matsubara
, “
Note on isotope effect in hydrogen bonded crystals
,”
Prog. Theor. Phys.
67
,
1
19
(
1982
), https://academic.oup.com/ptp/article-pdf/67/1/1/5438755/67-1-1.pdf.
68.
Q.
Yu
and
J. M.
Bowman
, “
How the Zundel (H5O2+) potential can be used to predict the proton stretch and bend frequencies of larger protonated water clusters
,”
J. Phys. Chem. Lett.
7
,
5259
5265
(
2016
).
69.
F.
Agostini
,
R.
Vuilleumier
, and
G.
Ciccotti
, “
Infrared spectroscopy and effective modes analysis of the protonated water dimer H+(H2O)2 at room temperature under H/D substitution
,”
J. Chem. Phys.
134
,
084303
(
2011
).
70.
L.
Wolniewicz
, “
Nonadiabatic energies of the ground state of the hydrogen molecule
,”
J. Chem. Phys.
103
,
1792
1799
(
1995
).
71.
E. J.
Allin
,
A. H.
McKague
,
V.
Soots
, and
H. L.
Welsh
, “
The Raman spectrum of solid hydrogen
,”
J. Phys. Fr.
26
,
615
620
(
1965
).
72.
M. S.
Liu
,
L. A.
Bursill
,
S.
Prawer
, and
R.
Beserman
, “
Temperature dependence of the first-order Raman phonon line of diamond
,”
Phys. Rev. B
61
,
3391
3395
(
2000
).
73.
J.
Kulda
,
H.
Kainzmaier
,
D.
Strauch
,
B.
Dorner
,
M.
Lorenzen
, and
M.
Krisch
, “
Overbending of the longitudinal optical phonon branch in diamond as evidenced by inelastic neutron and x-ray scattering
,”
Phys. Rev. B
66
,
241202
(
2002
).
74.
M.
Schwoerer-Böhning
,
A. T.
Macrander
, and
D. A.
Arms
, “
Phonon dispersion of diamond measured by inelastic x-ray scattering
,”
Phys. Rev. Lett.
80
,
5572
5575
(
1998
).
75.
P.
Pavone
,
K.
Karch
,
O.
Schütt
,
D.
Strauch
,
W.
Windl
,
P.
Giannozzi
, and
S.
Baroni
, “
Ab initio lattice dynamics of diamond
,”
Phys. Rev. B
48
,
3156
3163
(
1993
).
76.
For the carbon atom, we used the scalar-relativistic ultrasoft pseudopotential C.pbe-n-rrkjus_psl.1.0.0.UPF taken from the QE v6.6 PSL library.
77.
R.
Maezono
,
A.
Ma
,
M. D.
Towler
, and
R. J.
Needs
, “
Equation of state and Raman frequency of diamond from quantum Monte Carlo simulations
,”
Phys. Rev. Lett.
98
,
025701
(
2007
).
78.
D.
Vanderbilt
,
S. G.
Louie
, and
M. L.
Cohen
, “
Calculation of phonon–phonon interactions and the absence of two-phonon bound states in diamond
,”
Phys. Rev. Lett.
53
,
1477
1480
(
1984
).
79.
K.
Nakano
,
T.
Morresi
,
M.
Casula
,
R.
Maezono
, and
S.
Sorella
, “
Atomic forces by quantum Monte Carlo: Application to phonon dispersion calculations
,”
Phys. Rev. B
103
,
L121110
(
2021
).
80.
M.
Borinaga
,
I.
Errea
,
M.
Calandra
,
F.
Mauri
, and
A.
Bergara
, “
Anharmonic effects in atomic hydrogen: Superconductivity and lattice dynamical stability
,”
Phys. Rev. B
93
,
174308
(
2016
).
81.
A.
Rohatgi
, Webplotdigitizer: Version 4.3,
2020
.
82.
C. J.
Pickard
and
R. J.
Needs
, “
Structure of phase III of solid hydrogen
,”
Nat. Phys.
3
,
473
476
(
2007
).
83.
The hydrogen ultrasoft pseudopotential is generated through a scalar-relativistic calculation. We take it from the PSL of QE v6.6 where it is dubbed H.pbe-rrkjus_psl.1.0.0.UPF.
84.
L.
Monacelli
and
F.
Mauri
, “
Time-dependent self-consistent harmonic approximation: Anharmonic nuclear quantum dynamics and time correlation functions
,”
Phys. Rev. B
103
,
104305
(
2021
).
85.
G.
Rillo
,
M. A.
Morales
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals
,”
J. Chem. Phys.
148
,
102314
(
2018
).
86.
M.
Basire
,
F.
Mouhat
,
G.
Fraux
,
A.
Bordage
,
J.-L.
Hazemann
,
M.
Louvel
,
R.
Spezia
,
S.
Bonella
, and
R.
Vuilleumier
, “
Fermi resonance in CO2: Mode assignment and quantum nuclear effects from first principles molecular dynamics
,”
J. Chem. Phys.
146
,
134102
(
2017
).
87.
I.
Errea
,
M.
Calandra
,
C. J.
Pickard
,
J. R.
Nelson
,
R. J.
Needs
,
Y.
Li
,
H.
Liu
,
Y.
Zhang
,
Y.
Ma
, and
F.
Mauri
, “
Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system
,”
Nature
532
,
81
84
(
2016
).
88.
I.
Errea
,
F.
Belli
,
L.
Monacelli
,
A.
Sanna
,
T.
Koretsune
,
T.
Tadano
,
R.
Bianco
,
M.
Calandra
,
R.
Arita
,
F.
Mauri
, and
J. A.
Flores-Livas
, “
Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride
,”
Nature
578
,
66
69
(
2020
).
89.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
, 3rd ed. (
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
90.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
, (
Society for Industrial and Applied Mathematics
,
1998
).
You do not currently have access to this content.