Controlling the thermochemistry and kinetics of chemical reactions is a central problem in chemistry. Among factors permitting this control, the substituent effect constitutes a remarkable example. Here, we develop a model accounting for the effect of a substituent on the potential energy surface of the substrate (i.e., substituted molecule). We show that substituents affect the substrate by exerting forces on the nuclei. These substituent-induced forces are able to develop a work when the molecule follows a given reaction path. By applying a simple mechanical model, it becomes possible to quantify this work, which corresponds to the energy variation due to the effect of the substituent along a specific pathway. Our model accounts for the Hammett equation as a particular case, providing the first non-empirical scale for the σ and ρ constants, which, in the developed model, are related to the forces exerted by the substituents (σ) and the reaction path length (ρ), giving their product (σ · ρ) the well-known variation on the reaction energy due to the substituent.

1.
A.
Williams
,
Free Energy Relationships in Organic and Bio-Organic Chemistry
(
The Royal Society of Chemistry
,
Cambridge
,
2003
).
2.
L. P.
Hammett
,
Chem. Rev.
17
,
125
136
(
1935
).
3.
R. W.
Taft
,
J. Am. Chem. Soc.
74
,
2729
2732
(
1952
).
4.
L. R.
Staben
,
S. G.
Koenig
,
S. M.
Lehar
,
R.
Vandlen
,
D.
Zhang
,
J.
Chuh
,
S.-F.
Yu
,
C.
Ng
,
J.
Guo
,
Y.
Liu
,
A.
Fourie-O’Donohue
,
M. A.
Go
,
X.
Linghu
,
N. L.
Segraves
,
T.
Wang
,
J.
Chen
,
B. Q.
Wei
,
G. D. L.
Phillips
,
K.
Xu
,
K. R.
Kozak
,
S.
Mariathasan
,
J. A.
Flygare
, and
T. H.
Pillow
,
Nat. Chem.
8
,
1112
1119
(
2016
).
5.
B. G.
Lawhorn
,
J.
Philp
,
A. P.
Graves
,
D. A.
Holt
, Jr.
,
G. J.
Gatto
, and
L. S.
Kallander
,
J. Med. Chem.
59
,
10629
10641
(
2016
).
6.
D.-H.
Lee
,
K.-H.
Kwon
, and
C. S.
Yi
,
Science
333
,
1613
1616
(
2011
).
7.
R.
Singh
,
K.
Nagesh
, and
M.
Parameshwar
,
ACS Catal.
6
,
6520
6524
(
2016
).
8.
M. J.
Taylor
,
E. J.
Coakley
,
M. P.
Coles
,
H.
Cox
, and
J. R.
Fulton
,
Organometallics
34
,
2515
2521
(
2015
).
9.
K. S.
Arias
,
M. J.
Climent
,
A.
Corma
, and
S.
Iborra
,
ACS Sustainable Chem. Eng.
4
,
6152
6159
(
2016
).
10.
A.
Badalyan
and
S. S.
Stahl
,
Nature
535
,
406
410
(
2016
).
11.
Y. Ya.
Khomutnyk
,
A. J.
Argüelles
,
G. A.
Winschel
,
Z.
Sun
,
P. M.
Zimmerman
, and
P.
Nagorny
,
J. Am. Chem. Soc.
138
,
444
456
(
2016
).
12.
R.
Negishi
,
S.
Naya
, and
H.
Tada
,
J. Phys. Chem. C
119
,
11771
11776
(
2015
).
13.
C. N.
Neumann
,
J. M.
Hooker
, and
T.
Ritter
,
Nature
534
,
369
373
(
2016
);
[PubMed]
G. W.
Breton
and
C. J.
Crasto
,
J. Org. Chem.
80
,
7375
7384
(
2015
).
[PubMed]
14.
S. E.
Wheeler
and
K. N.
Houk
,
J. Am. Chem. Soc.
130
,
10854
10855
(
2008
).
15.
I. E.
Serdiuk
and
A. D.
Roshal
,
J. Phys. Chem. A
119
,
12672
12685
(
2015
).
16.
H.
Qian
,
M. E.
Cousins
,
E. H.
Horak
,
A.
Wakefield
,
M. D.
Liptak
, and
I.
Aprahamian
,
Nat. Chem.
9
,
83
87
(
2017
);
[PubMed]
M.
Marazzi
,
A.
López-Delgado
,
M. A.
Fernández-González
,
O.
Castaño
,
L. M.
Frutos
, and
M.
Temprado
,
J. Phys. Chem. A
116
,
7039
7049
(
2012
).
[PubMed]
17.
E. W.
Driscoll
,
J. R.
Hunt
, and
J. M.
Dawlaty
,
J. Phys. Chem. Lett.
7
,
2093
2099
(
2016
).
18.
D. N.
Kamber
,
Y.
Liang
,
R. J.
Blizzard
,
F.
Liu
,
R. A.
Mehl
,
K. N.
Houk
, and
J. A.
Prescher
,
J. Am. Chem. Soc.
137
,
8388
8391
(
2015
).
19.
M. P.
Hendricks
,
M. P.
Campos
,
G. T.
Cleveland
,
I.
Jen-La Plante
, and
J. S.
Owen
,
Science
348
,
1226
1230
(
2015
).
20.
S.
Ehrenson
,
R. T. C.
Brownlee
, and
R. W.
Taft
,
Prog. Phys. Org. Chem.
10
,
1
80
(
1973
).
21.
B.
Linderberg
,
S.
Svensson
,
P. A.
Malmquist
,
E.
Basilier
,
U.
Gelius
, and
K. A.
Siegbahn
,
Chem. Phys. Lett.
40
,
175
179
(
1976
).
22.
P.
Pérez
,
Y.
Simón-Manso
,
A.
Aizman
,
P.
Fuentealba
, and
R.
Contreras
,
J. Am. Chem. Soc.
122
,
4756
4762
(
2000
);
Y.
Simón-Manso
,
J. Phys. Chem. A
109
,
2006
2011
(
2005
).
[PubMed]
23.
J.
Ribas-Arino
and
D.
Marx
,
Chem. Rev.
112
,
5412
5487
(
2012
).
24.
P.
Dopieralski
,
J.
Ribas-Arino
,
P.
Anjukandi
,
M.
Krupicka
, and
D.
Marx
,
Angew. Chem., Int. Ed.
55
,
1304
1308
(
2016
);
P.
Dopieralski
,
J.
Ribas–Arino
,
P.
Anjukandi
,
M.
Krupicka
, and
D.
Marx
,
Nat. Chem.
9
,
164
170
(
2017
);
[PubMed]
M.
Krupicka
,
P.
Dopieralski
, and
D.
Marx
,
Angew. Chem., Int. Ed.
56
,
7745
7749
(
2017
);
A. E. M.
Beedle
,
M.
Mora
,
C. T.
Davis
,
A. P.
Snijders
,
G.
Stirnemann
, and
S.
Garcia-Manyes
,
Nat. Commun.
9
,
3155
(
2018
).
[PubMed]
25.
F.
Zapata
,
M. Á.
Fernández-González
,
D.
Rivero
,
Á.
Álvarez
,
M.
Marazzi
, and
L. M.
Frutos
,
J. Chem. Theory Comput.
10
,
312
323
(
2014
);
[PubMed]
M. Á.
Fernández-González
,
D.
Rivero
,
C.
García-Iriepa
,
D.
Sampedro
, and
L. M.
Frutos
,
J. Chem. Theory Comput.ibid.
13
,
727
736
(
2017
);
D.
Rivero
,
A.
Valentini
,
M. Á.
Fernández-González
,
F.
Zapata
,
C.
García-Iriepa
,
D.
Sampedro
,
R.
Palmeiro
, and
L. M.
Frutos
,
J. Chem. Theory Comput.ibid.
11
,
3740
3745
(
2015
);
A.
Valentini
,
D.
Rivero
,
F.
Zapata
,
C.
García-Iriepa
,
M.
Marazzi
,
R.
Palmeiro
,
I.
Fdez. Galván
,
D.
Sampedro
,
M.
Olivucci
, and
L. M.
Frutos
,
Angew. Chem., Int. Ed.
56
,
3842
3846
(
2017
).
26.
M.
Krupička
and
D.
Marx
,
J. Chem. Theory Comput.
11
,
841
846
(
2015
).
27.
F. A.
Carey
and
R. J.
Sundberg
,
Advanced Organic Chemistry Part A: Structure and Mechanisms
(
Springer
,
New York
,
2007
), pp.
965
1063
.
28.
G. I.
Bell
,
Science
200
,
618
627
(
1978
).
29.

The minus sign in the work integral is chosen to indicate that the force is exerted over the substrate, equivalently to an external force.

30.
A.
Toro-Labbe
,
S.
Gutierrez-Oliva
,
J. S.
Murray
, and
P.
Politzer
,
Mol. Phys.
105
,
2619
2625
(
2007
).

Supplementary Material

You do not currently have access to this content.