A trace amount of interfacial water is required to initiate hydrosilation reactions of trifunctional organosilanes to form surface assemblies. In recent studies, we have learned that water also has a critical role in directing molecular placement on surfaces because water can react with silicon to provide oxygenated sites for surface binding. Consequently, the wettability nature of substrates influences the placement and density of organosilane films formed by vapor-phase reactions. Nanopatterning protocols were designed using vapor-phase organosilanes and colloidal lithography to compare the wettability differences of hydrophilic mica(0001) compared to relatively hydrophobic Si(100) as a strategy for tracking the location of water on surfaces. The competition between hydrophobic and hydrophilic domains for the adsorption and coalescence of water condensed from vapor can be mapped indirectly by mapping the organosilanes, which bind to water at the solid interface, using atomic force microscopy. Trifunctional octadecyltrichlorosilane (OTS) was used as a marker molecule to map out the areas of the surface where water was deposited. The effect of systematic changes in film thickness and surface coverage of OTS was evaluated at the vapor/solid interface by adding an incremental amount of water to sealed reaction vessels to wet the surface and assessing the outcome after reaction with vapor-phase trichlorosilane. Reactive molecular dynamics simulations of the silicon–water vapor interface combined with electronic structure calculations of oxygenated silicon clusters with methyltrichlorosilane provided insight of the mechanism for surface binding, toward understanding the nature of the interface and wettability factors, which influence the association and placement of silane molecules on surfaces.

1.
H. X.
You
and
C. R.
Lowe
,
J. Colloid Interface Sci.
182
,
586
(
1996
).
2.
C.
Pick
 et al,
Langmuir
31
,
10725
(
2015
).
3.
N.
Ishida
 et al,
Colloids Surf., A
495
,
39
(
2016
).
4.
J.
Huang
 et al,
J. Phys. Chem. B
121
,
3151
(
2017
).
5.
N.
Crampton
 et al,
Langmuir
21
,
7884
(
2005
).
6.
L. S.
Shlyakhtenko
 et al,
Biophys. J.
77
,
568
(
1999
).
7.
J. M.
McLellan
,
M.
Geissler
, and
Y.
Xia
,
Chem. Phys. Lett.
408
,
80
(
2005
).
8.
D.
Niwa
 et al,
J. Phys. Chem. B
108
,
3240
(
2004
).
9.
J.
Dong
 et al,
Thin Solid Films
515
,
2116
(
2006
).
10.
J.
Duchet
 et al,
Compos. Interfaces
8
,
177
(
2001
).
11.
Y. X.
Zhuang
 et al,
J. Micromech. Microeng.
16
,
2259
(
2006
).
12.
N. G.
Semaltianos
,
Surf. Coat. Technol.
201
,
7327
(
2007
).
13.
C. R.
Fetterly
 et al,
Langmuir
34
,
4780
(
2018
).
14.
A.
George
,
D. H. A.
Blank
, and
J. E.
ten Elshof
,
Langmuir
25
,
13298
(
2009
).
15.
A.
George
 et al,
Langmuir
28
,
3045
(
2012
).
16.
H.-J.
Wang
 et al,
Science
322
,
80
(
2008
).
17.
C. A.
Angell
,
Science
319
,
582
(
2008
).
18.
N.
Kastelowitz
and
V.
Molinero
,
ACS Nano
12
,
8234
(
2018
).
19.
M. D.
Fayer
,
Physiology
26
,
381
(
2011
).
20.
G. F.
Reiter
 et al,
Phys. Rev. Lett.
111
,
036803
(
2013
).
21.
S. H.
Khan
 et al,
Phys. Rev. Lett.
105
,
106101
(
2010
).
22.
R. C.
Major
 et al,
Phys. Rev. Lett.
96
,
177803
(
2006
).
23.
C.
Zhang
,
J. Chem. Phys.
148
,
156101
(
2018
).
24.
M. H.
Köhler
and
J. R.
Bordin
,
J. Phys. Chem. C
122
,
6684
(
2018
).
25.
E.
Chiavazzo
 et al,
Nat. Commun.
5
,
3565
(
2014
).
26.
D.
Muñoz-Santiburcio
and
D.
Marx
,
Chem. Sci.
8
,
3444
(
2017
).
27.
J.
Köfinger
,
G.
Hummer
, and
C.
Dellago
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
13218
(
2008
).
28.
J. M. D.
Lane
 et al,
Langmuir
24
,
5209
(
2008
).
29.
D.
Beaglehole
and
H. K.
Christenson
,
J. Phys. Chem. C
96
,
3395
(
1992
).
30.
L.
Chen
 et al,
J. Phys. Chem. C
122
,
11385
(
2018
).
31.
O.
Björneholm
 et al,
Chem. Rev.
116
,
7698
(
2016
).
32.
G. E.
Ewing
,
Chem. Rev.
106
,
1511
(
2006
).
33.
J. J.
Valle-Delgado
 et al,
J. Chem. Phys.
123
,
034708
(
2005
).
34.
A.
Verdaguer
 et al,
Langmuir
23
,
9699
(
2007
).
35.
C. P.
Tripp
and
M. L.
Hair
,
Langmuir
8
,
1120
(
1992
).
36.
B.
Liberelle
,
X.
Banquy
, and
S.
Giasson
,
Langmuir
24
,
3280
(
2008
).
37.
P. B.
Miranda
 et al,
Phys. Rev. Lett.
81
,
5876
(
1998
).
38.
Cantrell
and
G. E.
Ewing
,
J. Phys. Chem. B
105
,
5434
(
2001
).
39.
M.
Elbaum
and
S. G.
Lipson
,
Phys. Rev. Lett.
72
,
3562
(
1994
).
40.
K.
Kimura
 et al,
J. Chem. Phys.
132
,
194705
(
2010
).
41.
F.
Takeshi
,
Sci. Technol. Adv. Mater.
11
,
033003
(
2010
).
42.
T.
Arai
 et al,
Sci. Rep.
7
,
4054
(
2017
).
43.
K.
Kobayashi
 et al,
Langmuir
32
,
3608
(
2016
).
44.
J.
Hu
 et al,
Surf. Sci.
344
,
221
(
1995
).
45.
J. I.
Kilpatrick
,
S.-H.
Loh
, and
S. P.
Jarvis
,
J. Am. Chem. Soc.
135
,
2628
(
2013
).
46.
S.
Santos
and
A.
Verdaguer
,
Materials
9
,
182
(
2016
).
47.
A. Y.
Fadeev
and
T. J.
McCarthy
,
Langmuir
16
,
7268
(
2000
).
48.
G.
Carson
and
S.
Granick
,
J. Appl. Polym. Sci.
37
,
2767
(
1989
).
49.
C. M. K.
Saner
 et al,
Beilstein J. Nanotechnol.
3
,
114
(
2012
).
50.
J.-R.
Li
and
J. C.
Garno
,
Nano Lett.
8
,
1916
(
2008
).
51.
A. L.
Brownfield
,
C. P.
Causey
, and
T. J.
Mullen
,
Thin Solid Films
594
,
184
(
2015
).
52.
C.
Bae
 et al,
Chem. Mater.
18
,
1085
(
2006
).
53.
A. L.
Brownfield
,
C. P.
Causey
, and
T. J.
Mullen
,
J. Phys. Chem. C
119
,
12455
(
2015
).
54.
D.
Chowdhury
, “
Combination of self-assembly and nanolithography as an effective nanofabrication methodology for device realization
,”
Curr. Sci
.
96
,
923
(
2009
).
55.
S.
Wang
 et al,
ACS Appl. Mater. Interfaces
5
,
2699
(
2013
).
56.
A. V.
Krasnoslobodtsev
and
S. N.
Smirnov
,
Langmuir
18
,
3181
(
2002
).
57.
A.
Ulman
,
Chem. Rev.
96
,
1533
(
1996
).
58.
J.
Sagiv
,
J. Am. Chem. Soc.
102
,
92
(
1980
).
59.
D. L.
Allara
,
A. N.
Parikh
, and
F.
Rondelez
,
Langmuir
11
,
2357
(
1995
).
60.
K. L.
Lusker
,
J.-J.
Yu
, and
J. C.
Garno
,
Thin Solid Films
519
,
5223
(
2011
).
61.
D.
Guo
 et al,
Langmuir
30
,
7206
(
2014
).
62.
D.
Nečas
and
P.
Klapetek
,
Cent. Eur. J. Phys.
10
,
181
(
2012
).
63.
A. C. T.
van Duin
 et al,
J. Phys. Chem. A
105
,
9396
(
2001
).
64.
A. C. T.
van Duin
 et al,
J. Phys. Chem. A
107
,
3803
(
2003
).
65.
G.
Psofogiannakis
and
A. C. T.
van Duin
,
Surf. Sci.
646
,
253
(
2016
).
66.
J. C.
Fogarty
 et al,
J. Chem. Phys.
132
,
174704
(
2010
).
67.
Q.
Liao
,
J.
Fu
, and
X.
Jin
,
Langmuir
15
,
7795
(
1999
).
68.
H. J. C.
Berendsen
 et al,
J. Chem. Phys.
81
,
3684
3690
(
1984
).
69.
J.
Wen
 et al,
J. Phys. Chem. A
121
,
587
(
2017
).
70.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
71.
M. J.
Frisch
 et al,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
72.
N.
Tillman
 et al,
J. Am. Chem. Soc.
110
,
6136
(
1988
).
73.
T.
Vallant
 et al,
J. Phys. Chem. B
102
,
7190
(
1998
).
74.
X.
Wu
and
T. G. M.
van de Ven
,
Langmuir
12
,
3859
(
1996
).
75.
J. E.
Seebergh
and
J. C.
Berg
,
Colloids Surf., A
100
,
139
(
1995
).
76.
P.
Borget
,
F.
Lafuma
, and
C.
Bonnet-Gonnet
,
J. Colloid Interface Sci.
285
,
136
(
2005
).

Supplementary Material

You do not currently have access to this content.