We have investigated the structure and phase behavior of biocompatible, aqueous deep eutectic solvents by combining choline acetate, hydrogen aspartate, and aspartate amino acid salts with water as the sole molecular hydrogen bond donor. Using contrast-variation neutron diffraction, interpreted via computational modeling, we show how the interplay between anion structure and water content affects the hydrogen bond network structure in the liquid, which, in turn, influences the eutectic composition and temperature. These mixtures expand the current range choline amino acid ionic liquids under investigation for biomass processing applications to include higher melting point salts and also explain how the ionic liquids retain their desirable properties in aqueous solution.

1.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
H. L.
Munro
,
R. K.
Rasheed
, and
V.
Tambyrajah
, “
Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains
,”
Chem. Commun.
19
,
2010
2011
(
2001
).
2.
L. J. B. M.
Kollau
,
M.
Vis
,
A.
van den Bruinhorst
,
G.
de With
, and
R.
Tuinier
, “
Activity modelling of the solid–liquid equilibrium of deep eutectic solvents
,”
Pure Appl. Chem.
91
(
8
),
1341
1349
(
2019
).
3.
L. J. B. M.
Kollau
,
M.
Vis
,
A.
van den Bruinhorst
,
A. C. C.
Esteves
, and
R.
Tuinier
, “
Quantification of the liquid window of deep eutectic solvents
,”
Chem. Commun.
54
(
95
),
13351
13354
(
2018
).
4.
M. A. R.
Martins
,
S. P.
Pinho
, and
J. A. P.
Coutinho
, “
Insights into the nature of eutectic and deep eutectic mixtures
,”
J. Solution Chem.
48
(
7
),
962
982
(
2019
).
5.
O.
Shayestehpour
and
S.
Zahn
, “
Molecular features of reline and homologous deep eutectic solvents contributing to nonideal mixing behavior
,”
J. Phys. Chem. B
124
(
35
),
7586
7597
(
2020
).
6.
L.
Fernandez
,
L. P.
Silva
,
M. A. R.
Martins
,
O.
Ferreira
,
J.
Ortega
,
S. P.
Pinho
, and
J. A. P.
Coutinho
, “
Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data
,”
Fluid Phase Equilib.
448
,
9
14
(
2017
).
7.
X.
Meng
,
K.
Ballerat-Busserolles
,
P.
Husson
, and
J.-M.
Andanson
, “
Impact of water on the melting temperature of urea plus choline chloride deep eutectic solvent
,”
New J. Chem.
40
(
5
),
4492
4499
(
2016
).
8.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling
,”
Green Chem.
18
(
9
),
2736
2744
(
2016
).
9.
A.
Paiva
,
R.
Craveiro
,
I.
Aroso
,
M.
Martins
,
R. L.
Reis
, and
A. R. C.
Duarte
, “
Natural deep eutectic solvents—Solvents for the 21st century
,”
ACS Sustainable Chem. Eng.
2
(
5
),
1063
1071
(
2014
).
10.
A.
Faraone
,
D. V.
Wagle
,
G. A.
Baker
,
E. C.
Novak
,
M.
Ohl
,
D.
Reuter
,
P.
Lunkenheimer
,
A.
Loidl
, and
E.
Mamontov
, “
Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent
,”
J. Phys. Chem. B
122
(
3
),
1261
1267
(
2018
).
11.
B. B.
Hansen
,
S.
Spittle
,
B.
Chen
,
D.
Poe
,
Y.
Zhang
,
J. M.
Klein
,
A.
Horton
,
L.
Adhikari
,
T.
Zelovich
,
B. W.
Doherty
,
B.
Gurkan
,
E. J.
Maginn
,
A.
Ragauskas
,
M.
Dadmun
,
T. A.
Zawodzinski
,
G. A.
Baker
,
M. E.
Tuckerman
,
R. F.
Savinell
, and
J. R.
Sangoro
, “
Deep eutectic solvents: A review of fundamentals and applications
,”
Chem. Rev.
121
(
3
),
1232
1285
(
2021
).
12.
O. S.
Hammond
,
D. T.
Bowron
,
A. J.
Jackson
,
T.
Arnold
,
A.
Sanchez-Fernandez
,
N.
Tsapatsaris
,
V. G.
Sakai
, and
K. J.
Edler
, “
Resilience of malic acid natural deep eutectic solvent nanostructure to solidification and hydration
,”
J. Phys. Chem. B
121
(
31
),
7473
7483
(
2017
).
13.
M. E.
Di Pietro
,
O.
Hammond
,
A.
van den Bruinhorst
,
A.
Mannu
,
A.
Padua
,
A.
Mele
, and
M. C.
Gomes
, “
Connecting chloride solvation with hydration in deep eutectic systems
,”
Phys. Chem. Chem. Phys.
23
(
1
),
107
111
(
2021
).
14.
X.-D.
Hou
,
Q.-P.
Liu
,
T. J.
Smith
,
N.
Li
, and
M.-H.
Zong
, “
Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids
,”
PLoS One
8
(
3
),
e59145
e59148
(
2013
).
15.
Q.-P.
Liu
,
X.-D.
Hou
,
N.
Li
, and
M.-H.
Zong
, “
Ionic liquids from renewable biomaterials: Synthesis, characterization and application in the pretreatment of biomass
,”
Green Chem.
14
(
2
),
304
307
(
2012
).
16.
M.
Petkovic
,
J. L.
Ferguson
,
H. Q. N.
Gunaratne
,
R.
Ferreira
,
M. C.
Leitão
,
K. R.
Seddon
,
L. P. N.
Rebelo
, and
C. S.
Pereira
, “
Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability
,”
Green Chem.
12
(
4
),
643
649
(
2010
).
17.
S.
Miao
,
J.
Wood
,
H. J.
Jiang
,
S.
Imberti
,
R.
Atkin
, and
G.
Warr
, “
Unusual origin of choline phenylalaninate ionic liquid nanostructure
,”
J. Mol. Liq.
319
,
114327
(
2020
).
18.
A.
Le Donne
,
H.
Adenusi
,
F.
Porcelli
, and
E.
Bodo
, “
Structural features of cholinium based protic ionic liquids through molecular dynamics
,”
J. Phys. Chem. B
123
(
26
),
5568
5576
(
2019
).
19.
S.
De Santis
,
G.
Masci
,
F.
Casciotta
,
R.
Caminiti
,
E.
Scarpellini
,
M.
Campetella
, and
L.
Gontrani
, “
Cholinium-amino acid based ionic liquids: A new method of synthesis and physico-chemical characterization
,”
Phys. Chem. Chem. Phys.
17
,
20687
20698
(
2015
).
20.
S.
Miao
,
R.
Atkin
, and
G. G.
Warr
, “
Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions
,”
Phys. Chem. Chem. Phys.
22
(
6
),
3490
3498
(
2020
).
21.
T. Q.
To
,
K.
Shah
,
P.
Tremain
,
B. A.
Simmons
,
B.
Moghtaderi
, and
R.
Atkin
, “
Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures
,”
Fuel
202
,
296
306
(
2017
).
22.
H. J.
Jiang
,
S.
Miao
,
S.
Imberti
,
B. A.
Simmons
,
R.
Atkin
, and
G. G.
Warr
, “
Liquid nanostructure of choline lysinate with water and a model lignin residue
,”
Green Chem.
23
(
2
),
856
866
(
2021
).
23.
X.-D.
Hou
,
N.
Li
, and
M.-H.
Zong
, “
Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures
,”
ACS Sustainable Chem. Eng.
1
(
5
),
519
526
(
2013
).
24.
C. F.
Carrozza
,
G.
Papa
,
A.
Citterio
,
R.
Sebastiano
,
B. A.
Simmons
, and
S.
Singh
, “
One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar
,”
Bioresour. Technol.
294
,
122214
(
2019
).
25.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution
,”
Angew. Chem., Int. Ed.
56
(
33
),
9782
9785
(
2017
).
26.
C.
D’Agostino
,
L. F.
Gladden
,
M. D.
Mantle
,
A. P.
Abbott
,
E. I.
Ahmed
,
A. Y. M.
Al-Murshedi
, and
R. C.
Harris
, “
Molecular and ionic diffusion in aqueous—Deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR
,”
Phys. Chem. Chem. Phys.
17
(
23
),
15297
15304
(
2015
).
27.
X.-D.
Hou
,
T. J.
Smith
,
N.
Li
, and
M.-H.
Zong
, “
Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin
,”
Biotechnol. Bioeng.
109
(
10
),
2484
2493
(
2012
).
28.
D.
Lapena
,
F.
Bergua
,
L.
Lomba
,
B.
Giner
, and
C.
Lafuente
, “
A comprehensive study of the thermophysical properties of reline and hydrated reline
,”
J. Mol. Liq.
303
,
112679
(
2020
).
29.
Y.
Wang
,
C.
Ma
,
C.
Liu
,
X.
Lu
,
X.
Feng
, and
X.
Ji
, “
Thermodynamic study of choline chloride-based deep eutectic solvents with water and methanol
,”
J. Chem. Eng. Data
65
(
5
),
2446
2457
(
2020
).
30.
A. K.
Soper
,
W. S.
Howells
, and
A. C.
Hannon
, ATLAS—Analysis of Time-of-Flight Diffraction Data from Liquid and Amorphous Samples RAL-89-046,
1989
.
31.
A. K.
Soper
, “
Empirical potential Monte Carlo simulation of fluid structure
,”
Chem. Phys.
202
,
295
(
1996
).
32.
E. P.
Serjeant
and
B.
Dempsey
,
Ionisation Constants of Organic Acids in Aqueous Solution
(
Pergamon Press
,
Oxford; New York
,
1979
).
33.
S.
McDonald
,
T.
Murphy
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
, “
Amphiphilically nanostructured deep eutectic solvents
,”
J. Phys. Chem. Lett.
9
(
14
),
3922
3927
(
2018
).
34.
A.
Le Donne
,
H.
Adenusi
,
F.
Porcelli
, and
E.
Bodo
, “
Hydrogen bonding as a clustering agent in protic ionic liquids: Like-charge vs opposite-charge dimer formation
,”
ACS Omega
3
(
9
),
10589
10600
(
2018
).
35.
M.
Brunner
,
S.
Imberti
,
B. A.
Simmons
,
G. G.
Warr
, and
R.
Atkin
, “
Liquid nanostructure of cholinium argininate biomass solvents
,”
ACS Sustainable Chem. Eng.
9
(
7
),
2880
2890
(
2021
).
36.
A. K.
Soper
, “
The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure?
,”
Int. Scholarly Res. Not.
2013
,
279463
.
37.
A. K.
Soper
, “
The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa
,”
Chem. Phys.
258
(
2-3
),
121
137
(
2000
).
38.
L.
Sapir
and
D.
Harries
, “
Restructuring a deep eutectic solvent by water: The nanostructure of hydrated choline chloride/urea
,”
J. Chem. Theory Comput.
16
(
5
),
3335
3342
(
2020
).
39.
M. V.
Fedotova
,
S. E.
Kruchinin
, and
G. N.
Chuev
, “
Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids
,”
J. Mol. Liq.
296
,
112081
(
2019
).
40.
Y.
Xie
,
H.
Dong
,
S.
Zhang
,
X.
Lu
, and
X.
Ji
, “
Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea
,”
J. Chem. Eng. Data
59
(
11
),
3344
3352
(
2014
).
41.
D.
Shah
and
F. S.
Mjalli
, “
Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach
,”
Phys. Chem. Chem. Phys.
16
(
43
),
23900
23907
(
2014
).
42.
P.
Kumari
,
Shobhna
,
S.
Kaur
, and
H. K.
Kashyap
, “
Influence of hydration on the structure of reline deep eutectic solvent: A molecular dynamics study
,”
ACS Omega
3
(
11
),
15246
15255
(
2018
).
43.
Q.
Gao
,
Y.
Zhu
,
X.
Ji
,
W.
Zhu
,
L.
Lu
, and
X.
Lu
, “
Effect of water concentration on the microstructures of choline chloride/urea (1:2)/water mixture
,”
Fluid Phase Equilib.
470
,
134
139
(
2018
).
44.
E. O.
Fetisov
,
D. B.
Harwood
,
I.-F. W.
Kuo
,
S. E. E.
Warrag
,
M. C.
Kroon
,
C. J.
Peters
, and
J. I.
Siepmann
, “
First-principles molecular dynamics study of a deep eutectic solvent: Choline chloride/urea and its mixture with water
,”
J. Phys. Chem. B
122
(
3
),
1245
1254
(
2018
).
45.
S.
Kaur
,
A.
Gupta
, and
H. K.
Kashyap
, “
How hydration affects the microscopic structural morphology in a deep eutectic solvent
,”
J. Phys. Chem. B
124
(
11
),
2230
2237
(
2020
).
46.
R.
Hayes
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
, “
How water dissolves in protic ionic liquids
,”
Angew. Chem., Int. Ed.
51
(
30
),
7468
7471
(
2012
).

Supplementary Material

You do not currently have access to this content.