Transition metal-catalyzed reactions invariably include steps where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision multiwavelet calculations to compute the metal–ligand association energies for 27 transition metal complexes with common ligands, such as H2, CO, olefins, and solvent molecules. By comparing our multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors.

1.
H.
Ryu
,
J.
Park
,
H. K.
Kim
,
J. Y.
Park
,
S.-T.
Kim
, and
M.-H.
Baik
, “
Pitfalls in computational modeling of chemical reactions and how to avoid them
,”
Organometallics
37
,
3228
(
2018
).
2.
I.
Funes-Ardoiz
and
F.
Schoenebeck
, “
Established and emerging computational tools to study homogeneous catalysis—From quantum mechanics to machine learning
,”
Chem
6
,
1904
(
2020
).
3.
G.
Sciortino
,
S.
Muñoz-López
,
A.
Lledós
, and
G.
Ujaque
, “
Comparative mechanistic study on the [Au(NHC)]+-catalyzed hydration of alkynes, alkenes, and allenes
,”
Organometallics
39
,
3469
(
2020
).
4.
N. X.
Gu
,
P. H.
Oyala
, and
J. C.
Peters
, “
H2 evolution from a thiolate-bound Ni(III) hydride
,”
J. Am. Chem. Soc.
142
,
7827
(
2020
).
5.
M.
Isegawa
,
T.
Matsumoto
, and
S.
Ogo
, “
Selective oxidation of H2 and CO by NiIr catalyst in aqueous solution: A DFT mechanistic study
,”
Inorg. Chem.
59
,
1014
(
2020
).
6.
C.
Mealli
,
G.
Manca
,
R.
Tarroni
,
D.
Olivieri
, and
C.
Carfagna
, “
Computational overview of a Pd-catalyzed olefin Bis-alkoxycarbonylation process
,”
Organometallics
39
,
1059
(
2020
).
7.
M.
Sparta
,
C.
Riplinger
, and
F.
Neese
, “
Mechanism of olefin asymmetric hydrogenation catalyzed by iridium phosphino-oxazoline: A pair natural orbital coupled cluster study
,”
J. Chem. Theory Comput.
10
,
1099
(
2014
).
8.
D.
Hong
,
Y.
Shimoyama
,
Y.
Ohgomori
,
R.
Kanega
,
H.
Kotani
,
T.
Ishizuka
,
Y.
Kon
,
Y.
Himeda
, and
T.
Kojima
, “
Cooperative effects of heterodinuclear IrIII–MII complexes on catalytic H2 evolution from formic acid dehydrogenation in water
,”
Inorg. Chem.
59
,
11976
(
2020
).
9.
Y.
Luo
,
Z.
Huang
,
Z.
Chen
,
Z.
Xu
,
J.
Meng
,
H.-Y.
Li
,
Q.
Meng
, and
D.
Tang
, “
Strategy used to control the mechanism of homogeneous alkyne/olefin hydrogenation: AIMD simulations and DFT calculations
,”
J. Org. Chem.
85
,
11626
(
2020
).
10.
N.
Li
,
R.
Chang
,
W.
Yang
,
Z.
Zhang
, and
Z.
Guo
, “
Mechanistic insights into Ni-catalyzed difunctionalization of alkenes using organoboronic acids and organic halides: Understanding remarkable substrate-dependent regioselectivity
,”
Organometallics
39
,
2057
(
2020
).
11.
N.
Sieffert
and
M.
Bühl
, “
Noncovalent interactions in a transition-metal triphenylphosphine complex: A density functional case study
,”
Inorg. Chem.
48
,
4622
(
2009
).
12.
M. M.
Quintal
,
A.
Karton
,
M. A.
Iron
,
A. D.
Boese
, and
J. M. L.
Martin
, “
Benchmark study of DFT functionals for late-transition-metal reactions
,”
J. Phys. Chem. A
110
,
709
(
2006
).
13.
Y.
Minenkov
,
G.
Occhipinti
, and
V. R.
Jensen
, “
Metal–phosphine bond strengths of the transition metals: A challenge for DFT
,”
J. Phys. Chem. A
113
,
11833
(
2009
).
14.
M.
Sparta
,
V. R.
Jensen
, and
K. J.
Børve
, “
Accurate metal–ligand bond energies in the η2-C2H4 and η2-C60 complexes of Pt(PH3)2, with application to their Bis(triphenylphosphine) analogues
,”
Mol. Phys.
111
,
1599
(
2013
).
15.
T.
Husch
,
L.
Freitag
, and
M.
Reiher
, “
Calculation of ligand dissociation energies in large transition-metal complexes
,”
J. Chem. Theory Comput.
14
,
2456
(
2018
).
16.
B. A.
Shiekh
, “
Hierarchy of commonly used DFT methods for predicting the thermochemistry of Rh-mediated chemical transformations
,”
ACS Omega
4
,
15435
(
2019
).
17.
M. A.
Iron
and
T.
Janes
, “
Evaluating transition metal barrier heights with the latest density functional theory exchange–correlation functionals: The MOBH35 benchmark database
,”
J. Phys. Chem. A
123
,
3761
(
2019
).
18.
M.
Modrzejewski
,
G.
Chalasinski
, and
M. M.
Szczesniak
, “
Assessment of newest meta-GGA hybrids for late transition metal reactivity: Fractional charge and fractional spin perspective
,”
J. Phys. Chem. C
123
,
8047
(
2018
).
19.
S.
Dohm
,
A.
Hansen
,
M.
Steinmetz
,
S.
Grimme
, and
M. P.
Checinski
, “
Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions
,”
J. Chem. Theory Comput.
14
,
2596
(
2018
).
20.
Y. A.
Aoto
,
A. P.
de Lima Batista
,
A.
Köhn
, and
A. G. S.
de Oliveira-Filho
, “
How to arrive at accurate benchmark values for transition metal compounds: Computation or experiment?
,”
J. Chem. Theory Comput.
13
,
5291
(
2017
).
21.
T.
Weymuth
,
E. P. A.
Couzijn
,
P.
Chen
, and
M.
Reiher
, “
New benchmark set of transition-metal coordination reactions for the assessment of density functionals
,”
J. Chem. Theory Comput.
10
,
3092
(
2014
).
22.
M.
Steinmetz
and
S.
Grimme
, “
Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts
,”
ChemistryOpen
2
,
115
(
2013
).
23.
Á.
Vidal Vidal
,
L. C.
de Vicente Poutás
,
O.
Nieto Faza
, and
C. S.
López
, “
On the use of popular basis sets: Impact of the intramolecular basis set superposition error
,”
Molecules
24
,
3810
(
2019
).
24.
C.
Plascencia
,
J.
Wang
, and
A. K.
Wilson
, “
Importance of the ligand basis set in ab initio thermochemical calculations of transition metal species
,”
Chem. Phys. Lett.
685
,
496
(
2017
).
25.
R.
Sure
,
J. G.
Brandenburg
, and
S.
Grimme
, “
Small atomic orbital basis set first‐principles quantum chemical methods for large molecular and periodic systems: A critical analysis of error sources
,”
ChemistryOpen
5
,
94
(
2016
).
26.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
(
1972
).
27.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
28.
K.
Lee
,
J. D.
Culpepper
,
R.
Parveen
,
D. C.
Swenson
,
B.
Vlaisavljevich
, and
S. R.
Daly
, “
Modifying phosphorus(III) substituents to activate remote ligand-centered reactivity in triaminoborane ligands
,”
Organometallics
39
,
2526
(
2020
).
29.
S.
Ghorai
and
E. D.
Jemmis
, “
DFT study of C–C and C–N coupling on a quintuple-bonded Cr2 template: MECP (minimum energy crossing point) barriers control product distribution
,”
Organometallics
39
,
1700
(
2020
).
30.
K.
Sakata
and
S.
Shimada
, and
R.
Takeuchi
, “
Regioselectivity in the iridium-catalyzed [2 + 2 + 2] cycloaddition of unsymmetrical α,ω-diynes with nitrile: A DFT study
,”
Organometallics
39
,
2091
(
2020
).
31.
I. G.
Powers
,
J. M.
Andjaba
,
M.
Zeller
, and
C.
Uyeda
, “
Catalytic C(sp2)–H amination reactions using dinickel imides
,”
Organometallics
39
,
3794
(
2020
).
32.
G.
Keglevich
,
R.
Henyecz
, and
Z.
Mucsi
, “
Experimental and theoretical study on the ‘2,2′-bipiridyl-Ni-catalyzed’ Hirao reaction of >P(O)H reagents and halobenzenes: A Ni(0) → Ni(II) or a Ni(II) → Ni(IV) mechanism?
,”
J. Org. Chem.
85
,
14486
(
2020
).
33.
C.
Maquilón
,
B.
Limburg
,
V.
Laserna
,
D.
Garay-Ruiz
,
J.
González-Fabra
,
C.
Bo
,
M.
Martínez Belmonte
,
E. C.
Escudero-Adán
, and
A. W.
Kleij
, “
Effect of an Al(III) complex on the regio- and stereoisomeric formation of bicyclic organic carbonates
,”
Organometallics
39
,
1642
(
2020
).
34.
A.
Winkler
,
K.
Brandhorst
,
M.
Freytag
,
P. G.
Jones
, and
M.
Tamm
, “
Palladium(II) complexes with anionic N-heterocyclic carbene–borate ligands as catalysts for the amination of aryl halides
,”
Organometallics
35
,
1160
(
2016
).
35.
V.
Varela-Izquierdo
,
A. M.
Geer
,
J.
Navarro
,
J. A.
López
,
M. A.
Ciriano
, and
C.
Tejel
, “
Rhodium complexes in P–C bond formation: Key role of a hydrido ligand
,”
J. Am. Chem. Soc.
143
,
349
(
2021
).
36.
A. M.
Camp
,
M. R.
Kita
,
P. T.
Blackburn
,
H. M.
Dodge
,
C.-H.
Chen
, and
A. J. M.
Miller
, “
Selecting double bond positions with a single cation-responsive iridium olefin isomerization catalyst
,”
J. Am. Chem. Soc.
143
,
2792
(
2021
).
37.
L. A.
Hammarback
,
B. J.
Aucott
,
J. T. W.
Bary
,
I. P.
Clark
,
M.
Towrie
,
A.
Robinson
,
I. J. S.
Fairlamb
, and
J. M.
Lynam
, “
Direct observation of the microscopic reverse of the ubiquitous concerted metalation deprotonation step in C–H bond activation catalysis
,”
J. Am. Chem. Soc.
143
,
1356
(
2021
).
38.
Z.
Bai
,
H.
Zhang
,
H.
Wang
,
H.
Yu
,
G.
Chen
, and
G.
He
, “
Enantioselective alkylamination of unactivated alkenes under copper catalysis
,”
J. Am. Chem. Soc.
143
,
1195
(
2021
).
39.
L.
Zhao
,
C.
Hu
,
X.
Cong
,
G.
Deng
,
L. L.
Liu
,
M.
Luo
, and
X.
Zeng
, “
Cyclic (alkyl)(amino)carbene ligand-promoted nitro deoxygenative hydroboration with chromium catalysis: Scope, mechanism, and applications
,”
J. Am. Chem. Soc.
143
,
1618
(
2021
).
40.
H.
Shao
,
S.
Chakrabarty
,
X.
Qi
,
J. M.
Takacs
, and
P.
Liu
, “
Ligand conformational flexibility enables enantioselective tertiary C–B bond formation in the phosphonate-directed catalytic asymmetric alkene hydroboration
,”
J. Am. Chem. Soc.
143
,
4801
(
2021
).
41.
In a small literature survey, we found that only 2 of 26 recently published articles in the Journal of the American Chemical Society (all from 2021) employed correlation consistent basis sets for computing energies of transition-metal systems. An example includes
M.
Kim
,
B.
Park
,
M.
Shin
,
S.
Kim
,
J.
Kim
,
M.-H.
Baik
, and
S. H.
Cho
, “
Copper-catalyzed enantiotopic-group-selective allylation of gem-diborylalkanes
,”
J. Am. Chem. Soc.
143
,
1069
(
2021
).
42.
H.
Kruse
and
S.
Grimme
, “
A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems
,”
J. Chem. Phys.
136
,
154101
(
2012
).
43.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
(
1970
).
44.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
, “
State of the art in counterpoise theory
,”
Chem. Rev.
94
,
1873
(
1994
).
45.

The BSSE is usually divided into two subcategories: inter- and intramolecular BSSE. While both types originate from the same principles (overlapping basis functions), they differ in the remedies used to correct for them. It is beyond the scope of this paper to review strategies for dealing with intramolecular BSSEs.

46.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions
,”
Chem. Theory Comput.
10
,
3791
(
2014
).
47.
J.
Witte
,
J. B.
Neaton
, and
M.
Head-Gordon
, “
Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory
,”
J. Chem. Phys.
144
,
194306
(
2016
).
48.
S.
Shafiei-Haghighi
,
A.
Brar
,
D. K.
Unruh
,
A. F.
Cozzolino
, and
M.
Findlater
, “
Experimental and computational studies of phosphine ligand displacement in iridium–pincer complexes employing pyridine or acetonitrile
,”
Organometallics
39
,
3461
(
2020
).
49.
B. L.
Oliveira
,
B. J.
Stenton
,
V. B.
Unnikrishnan
,
C. R.
de Almeida
,
J.
Conde
,
M.
Negrão
,
F. S. S.
Schneider
,
C.
Cordeiro
,
M. G.
Ferreira
,
G. F.
Caramori
,
J. B.
Domingos
,
R.
Fior
, and
G. J. L.
Bernardes
, “
Platinum-triggered bond-cleavage of pentynoyl amide and N-propargyl handles for drug-activation
,”
J. Am. Chem. Soc.
142
,
10869
(
2020
).
50.
M.
Gutowski
,
J. H.
van Lenthe
,
J.
Verbeek
,
F. B.
van Duijneveldt
, and
G.
Chałasinski
, “
The basis set superposition error in correlated electronic structure calculations
,”
Chem. Phys. Lett.
124
,
370
(
1986
).
51.
M. M.
Szczȩśniak
and
S.
Scheiner
, “
Correction of the basis set superposition error in SCF and MP2 interaction energies. The water dimer
,”
J. Chem. Phys.
84
,
6328
(
1986
).
52.
S. M.
Tekarli
,
M. L.
Drummond
,
T. G.
Williams
,
T. R.
Cundari
, and.
A. K.
Wilson
, “
Performance of density functional theory for 3d transition metal-containing complexes: Utilization of the correlation consistent basis sets
,”
J. Phys. Chem. A
113
,
8607
(
2009
).
53.
L.
Frediani
and
D.
Sundholm
, “
Real-space numerical grid methods in quantum chemistry
,”
Phys. Chem. Chem. Phys.
17
,
31357
(
2015
).
54.
B.
Alpert
,
G.
Beylkin
,
D.
Gines
, and
L.
Vozovoi
, “
Adaptive solution of partial differential equations in multiwavelet bases
,”
J. Comput. Phys.
182
,
149
(
2002
).
55.
B. K.
Alpert
, “
A class of bases in L2 for the sparse representation of integral operators
,”
SIAM J. Math. Anal.
24
,
246
(
1993
).
56.
L.
Frediani
,
E.
Fossgaard
,
T.
Flå
, and
K.
Ruud
, “
Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions
,”
Mol. Phys.
111
,
1143
(
2013
).
57.
R. J.
Harrison
,
G. I.
Fann
,
T.
Yanai
,
Z.
Gan
, and
G.
Beylkin
, “
Multiresolution quantum chemistry: Basic theory and initial applications
,”
J. Chem. Phys.
121
,
11587
(
2004
).
58.
T.
Yanai
,
G. I.
Fann
,
Z.
Gan
,
R. J.
Harrison
, and
G.
Beylkin
, “
Multiresolution quantum chemistry in multiwavelet bases: Hartree–Fock exchange
,”
J. Chem. Phys.
121
,
6680
(
2004
).
59.
T.
Yanai
,
G. I.
Fann
,
Z.
Gan
,
R. J.
Harrison
, and
G.
Beylkin
, “
Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree–Fock and density functional theory
,”
J. Chem. Phys.
121
,
2866
(
2004
).
60.
G.
Beylkin
,
V.
Cheruvu
, and
F.
Perez
, “
Fast adaptive algorithms in the non-standard form for multidimensional problems
,”
Appl. Comput. Harmonic Anal.
24
,
354
(
2008
).
61.
M. H.
Kalos
, “
Monte Carlo calculations of the ground state of three- and four-body nuclei
,”
Phys. Rev.
128
,
1791
(
1962
).
62.
G.
Beylkin
,
R.
Cramer
,
G.
Fann
, and
R. J.
Harrison
, “
Multiresolution separated representations of singular and weakly singular operators
,”
Appl. Comput. Harmonic Anal.
23
,
235
(
2007
).
63.
S. R.
Jensen
,
S.
Saha
,
J. A.
Flores-Livas
,
W.
Huhn
,
V.
Blum
,
S.
Goedecker
, and
L.
Frediani
, “
The elephant in the room of density functional theory calculations
,”
J. Phys. Chem. Lett.
8
,
1449
(
2017
).
64.
A.
Brakestad
,
S. R.
Jensen
,
P.
Wind
,
M.
D’Alessandro
,
L.
Genovese
,
K. H.
Hopmann
, and
L.
Frediani
, “
Static polarizabilities at the basis set limit: A benchmark of 124 species
,”
J. Chem. Theory Comput.
16
,
4874
(
2020
).
65.
S. R.
Jensen
,
T.
Flå
,
D.
Jonsson
,
R. S.
Monstad
,
K.
Ruud
, and
L.
Frediani
, “
Magnetic properties with multiwavelets and DFT: The complete basis set limit achieved
,”
Phys. Chem. Chem. Phys.
18
,
21145
(
2016
).
66.
Á.
Vázquez-Mayagoitia
,
W. S.
Thornton
,
J. R.
Hammond
, and
R. J.
Harrison
, “
Quantum chemistry methods with multiwavelet bases on massive parallel computers
,”
Annu. Rep. Comput. Chem.
10
,
3
(
2014
).
67.
L. A.
Barnes
,
B.
Liu
, and
R.
Lindh
, “
Structure and energetics of Cr(CO)6 and Cr(CO)5
,”
J. Chem. Phys.
98
,
3978
(
1993
).
68.
G. R.
Morello
and
K. H.
Hopmann
, “
A dihydride mechanism can explain the intriguing substrate selectivity of iron-PNP-mediated hydrogenation
,”
ACS Catal.
7
,
5847
(
2017
).
69.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2017
).
70.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
,
224108
(
2020
).
71.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
72.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
73.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
, “
Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure
,”
Chem. Phys.
2
,
41
(
1973
).
74.
J. L.
Whitten
, “
Coulombic potential energy integrals and approximations
,”
J. Phys. Chem.
58
,
4496
(
1973
).
75.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
, “
On some approximations in applications of Xα theory
,”
J. Chem. Phys.
71
,
3396
(
1979
).
76.
C.
van Alsenoy
, “
Ab initio calculations on large molecules: The multiplicative integral approximation
,”
J. Comput. Chem.
9
,
620
(
1988
).
77.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acta
97
,
119
(
1997
).
78.
R. A.
Kendall
and
H. A.
Früchtl
, “
The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development
,”
Theor. Chem. Acta
97
,
158
(
1997
).
79.
D. E.
Bernholdt
and
R. J.
Harrison
, “
Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method
,”
J. Chem. Phys.
109
,
1593
(
1998
).
80.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-d) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
81.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
(
2011
).
82.
J. P.
Perdew
, “
Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
34
,
7406
(
1986
).
83.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
(
1986
).
84.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
85.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
86.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
(
1999
).
87.
F.
Jensen
, “
Polarization consistent basis sets: Principles
,”
J. Chem. Phys.
115
,
9113
(
2001
).
88.
F.
Jensen
, “
Polarization consistent basis sets: II. Estimating the Kohn–Sham basis set limit
,”
J. Chem. Phys.
116
,
7372
(
2002
).
89.
F.
Jensen
, “
Polarization consistent basis sets. III. The importance of diffuse functions
,”
J. Chem. Phys.
117
,
9234
(
2002
).
90.
F.
Jensen
and
T.
Helgaker
, “
Polarization consistent basis sets. V. The elements Si–Cl
,”
J. Chem. Phys.
121
,
3463
(
2004
).
91.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
92.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
(
1993
).
93.
N. B.
Balabanov
and
K. A.
Peterson
, “
Systematically convergent basis sets for transition metals. I. All electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
123
,
064107
(
2005
).
94.
N. B.
Balabanov
and
K. A.
Peterson
, “
Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods
,”
J. Chem. Phys.
125
,
074110
(
2006
).
95.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
(
1980
).
96.
A. D.
McLean
and
G. S.
Chandler
, “
Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, z=11–18
,”
J. Chem. Phys.
72
,
5639
(
1980
).
97.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements
,”
J. Chem. Phys.
77
,
3654
(
1982
).
98.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
, “
Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F
,”
J. Comput. Chem.
4
,
294
(
1983
).
99.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
, “
Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
,”
J. Chem. Phys.
80
,
3265
(
1984
).
100.
L. A.
Curtiss
,
M. P.
McGrath
,
J. P.
Blaudeau
,
N. E.
Davis
,
R. C.
Binning
, and
L.
Radom
, “
Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr
,”
J. Chem. Phys.
103
,
6104
(
1995
).
101.
J.-P.
Blaudeau
,
M. P.
McGrath
,
L. A.
Curtiss
, and
L.
Radom
, “
Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca
,”
J. Chem. Phys.
107
,
5016
(
1997
).
102.
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
, “
6-31G* basis set for atoms K through Zn
,”
J. Chem. Phys.
109
,
1223
(
1998
).
103.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
,”
J. Chem. Phys.
82
,
299
(
1985
).
104.
R.
Bast
,
M.
Bjorgve
,
R.
Di Remigio
,
A.
Durdek
,
L.
Frediani
,
G.
Gerez
,
S. R.
Jensen
,
J.
Juselius
,
R.
Monstad
, and
P.
Wind
(
2020
). “
MRChem: MultiResolution Chemistry
,” Zenodo. .
105.
See https://mrchem.readthedocs.io/en/latest for MRChem Documentation,
2020
.
106.
R. J.
Harrison
, “
Krylov subspace accelerated inexact Newton method for linear and nonlinear equations
,”
J. Comput. Chem
25
,
328
(
2003
).
107.

If there are few basis functions, these are less likely to overlap, which is the reason for the small BSSE of minimal basis sets. Note that a small BSSE does not imply a good basis set, as the overall BSE will be large for minimal basis sets.

108.
K. S.
Kim
,
P.
Tarakeshwar
, and
J. Y.
Lee
, “
Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies
,”
Chem. Rev.
100
,
4145
(
2000
).
109.
J.
Diccianni
,
Q.
Lin
, and
T.
Diao
, “
Mechanisms of nickel-catalyzed coupling reactions and appplications in alkene functionalization
,”
Acc. Chem. Res.
53
,
906
(
2002
).
110.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Comparing counterpoise-corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions
,”
J. Chem. Theory Comput.
10
,
49
(
2014
).
111.
R. S.
Grev
and
H. F.
Schaefer
 III
, “
6‐311G is not of valence triple‐zeta quality
,”
J. Chem. Phys.
91
,
7305
(
1989
).
112.
M.
Reiners
,
A. C.
Fecker
,
D.
Baabe
,
M.
Freytag
,
P. G.
Jones
, and
M. D.
Walter
, “
Cobalt and nickel compounds with pentadienyl and edge-bridged pentadienyl ligands: Revisited
,”
Organometallics
38
,
4329
(
2019
).
113.
R.
Jain
,
A. A.
Mamun
,
R. M.
Buchanan
,
P. M.
Kozlowski
, and
C. A.
Grapperhaus
, “
Ligand-assisted metal-centered electrocatalytic hydrogen evolution upon reduction of a bis(thiosemicarbazonato)Ni(II) complex
,”
Inorg. Chem.
57
,
13486
(
2018
).
114.
R.
Mondol
and
E.
Otten
, “
Aluminum complexes with redox-active formazanate ligand: Synthesis, characterization, and reduction chemistry
,”
Inorg. Chem.
58
,
6344
(
2019
).
115.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
(
2009
).
116.
A.
Brakestad
,
P.
Wind
,
S. R.
Jensen
,
L.
Frediani
, and
K. H.
Hopmann
, “
Replication data for: Multiwavelets applied to metal-ligand interactions: Energies free from basis set errors
,”
DataverseNO
(
2021
).

Supplementary Material

You do not currently have access to this content.