In this work, we propose a new method to calculate molecular nonradiative electronic relaxation rates based on the numerically exact time-dependent density matrix renormalization group theory. This method could go beyond the existing frameworks under the harmonic approximation (HA) of the potential energy surface (PES) so that the anharmonic effect could be considered, which is of vital importance when the electronic energy gap is much larger than the vibrational frequency. We calculate the internal conversion (IC) rates in a two-mode model with Morse potential to investigate the validity of HA. We find that HA is unsatisfactory unless only the lowest several vibrational states of the lower electronic state are involved in the transition process when the adiabatic excitation energy is relatively low. As the excitation energy increases, HA first underestimates and then overestimates the IC rates when the excited state PES shifts toward the dissociative side of the ground state PES. On the contrary, HA slightly overestimates the IC rates when the excited state PES shifts toward the repulsive side. In both cases, a higher temperature enlarges the error of HA. As a real example to demonstrate the effectiveness and scalability of the method, we calculate the IC rates of azulene from S1 to S0 on the ab initio anharmonic PES approximated by the one-mode representation. The calculated IC rates of azulene under HA are consistent with the analytically exact results. The rates on the anharmonic PES are 30%–40% higher than the rates under HA.

1.
N. J.
Turro
,
Modern Molecular Photochemistry
(
University Science Books
,
1991
).
2.
R.
Englman
and
J.
Jortner
, “
The energy gap law for radiationless transitions in large molecules
,”
Mol. Phys.
18
,
145
164
(
1970
).
3.
S. H.
Lin
,
C. H.
Chang
,
K. K.
Liang
,
R.
Chang
,
Y. J.
Shiu
,
J. M.
Zhang
,
T.-S.
Yang
,
M.
Hayashi
, and
F. C.
Hsu
, “
Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers
,”
Adv. Chem. Phys.
121
,
1
88
(
2002
).
4.
Q.
Shi
and
E.
Geva
, “
Nonradiative electronic relaxation rate constants from approximations based on linearizing the path-integral forward–backward action
,”
J. Phys. Chem. A
108
,
6109
6116
(
2004
).
5.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
, “
Excited state radiationless decay process with Duschinsky rotation effect: Formalism and implementation
,”
J. Chem. Phys.
126
,
114302
(
2007
).
6.
R.
Ianconescu
,
J.
Tatchen
, and
E.
Pollak
, “
On-the-fly semiclassical study of internal conversion rates of formaldehyde
,”
J. Chem. Phys.
139
,
154311
(
2013
).
7.
S.
Banerjee
,
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
Temperature dependence of radiative and nonradiative rates from time-dependent correlation function methods
,”
J. Chem. Theory Comput.
12
,
774
786
(
2016
).
8.
X.
Sun
and
E.
Geva
, “
Equilibrium Fermi’s golden rule charge transfer rate constants in the condensed phase: The linearized semiclassical method vs classical Marcus theory
,”
J. Phys. Chem. A
120
,
2976
2990
(
2016
).
9.
A.
Celestino
and
A.
Eisfeld
, “
Tuning nonradiative lifetimes via molecular aggregation
,”
J. Phys. Chem. A
121
,
5948
5953
(
2017
).
10.
H.-D.
Meyer
, “
Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
374
(
2012
).
11.
G. W.
Richings
,
I.
Polyak
,
K. E.
Spinlove
,
G. A.
Worth
,
I.
Burghardt
, and
B.
Lasorne
, “
Quantum dynamics simulations using Gaussian wavepackets: The vMCG method
,”
Int. Rev. Phys. Chem.
34
,
269
308
(
2015
).
12.
B. F. E.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
13.
G.
Cui
and
W.
Thiel
, “
Generalized trajectory surface-hopping method for internal conversion and intersystem crossing
,”
J. Chem. Phys.
141
,
124101
(
2014
).
14.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics
,”
Chem. Rev.
118
,
7026
7068
(
2018
).
15.
L.
Wang
,
J.
Qiu
,
X.
Bai
, and
J.
Xu
, “
Surface hopping methods for nonadiabatic dynamics in extended systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1435
(
2020
).
16.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
17.
S. N.
Chowdhury
and
P.
Huo
, “
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
,”
J. Chem. Phys.
147
,
214109
(
2017
).
18.
X.
Gao
,
Y.
Lai
, and
E.
Geva
, “
Simulating absorption spectra of multiexcitonic systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6465
6480
(
2020
).
19.
X.
Gao
and
E.
Geva
, “
A nonperturbative methodology for simulating multidimensional spectra of multiexcitonic molecular systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6491
6502
(
2020
).
20.
J.
Zheng
,
J.
Peng
,
Y.
Xie
,
Y.
Long
,
X.
Ning
, and
Z.
Lan
, “
Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian
,”
Phys. Chem. Chem. Phys.
22
,
18192
18204
(
2020
).
21.
A.
Toniolo
,
S.
Olsen
,
L.
Manohar
, and
T. J.
Martínez
, “
Conical intersection dynamics in solution: The chromophore of green fluorescent protein
,”
Faraday Discuss.
127
,
149
163
(
2004
).
22.
Y.
Liu
,
C.
Li
,
Z.
Ren
,
S.
Yan
, and
M. R.
Bryce
, “
All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes
,”
Nat. Rev. Mater.
3
,
18020
(
2018
).
23.
G. W.
Robinson
and
R. P.
Frosch
, “
Theory of electronic energy relaxation in the solid phase
,”
J. Chem. Phys.
37
,
1962
1973
(
1962
).
24.
G. W.
Robinson
and
R. P.
Frosch
, “
Electronic excitation transfer and relaxation
,”
J. Chem. Phys.
38
,
1187
1203
(
1963
).
25.
S. H.
Lin
, “
Rate of interconversion of electronic and vibrational energy
,”
J. Chem. Phys.
44
,
3759
3767
(
1966
).
26.
S. H.
Lin
and
R.
Bersohn
, “
Effect of partial deuteration and temperature on triplet-state lifetimes
,”
J. Chem. Phys.
48
,
2732
2736
(
1968
).
27.
Y.
Niu
,
Q.
Peng
, and
Z.
Shuai
, “
Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect
,”
Sci. China, Ser. B: Chem.
51
,
1153
1158
(
2008
).
28.
Y.
Niu
,
Q.
Peng
,
C.
Deng
,
X.
Gao
, and
Z.
Shuai
, “
Theory of excited state decays and optical spectra: Application to polyatomic molecules
,”
J. Phys. Chem. A
114
,
7817
7831
(
2010
).
29.
Q.
Peng
,
Y.
Niu
,
Q.
Shi
,
X.
Gao
, and
Z.
Shuai
, “
Correlation function formalism for triplet excited state decay: Combined spin–orbit and nonadiabatic couplings
,”
J. Chem. Theory Comput.
9
,
1132
1143
(
2013
).
30.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
, “
Toward quantitative prediction of molecular fluorescence quantum efficiency: Role of Duschinsky rotation
,”
J. Am. Chem. Soc.
129
,
9333
9339
(
2007
).
31.
R.
Ianconescu
and
E.
Pollak
, “
Semiclassical initial value representation study of internal conversion rates
,”
J. Chem. Phys.
134
,
234305
(
2011
).
32.
A.
Humeniuk
,
M.
Bužančić
,
J.
Hoche
,
J.
Cerezo
,
R.
Mitrić
,
F.
Santoro
, and
V.
Bonačić-Koutecký
, “
Predicting fluorescence quantum yields for molecules in solution: A critical assessment of the harmonic approximation and the choice of the lineshape function
,”
J. Chem. Phys.
152
,
054107
(
2020
).
33.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
34.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
10356
(
1993
).
35.
G.
Vidal
, “
Efficient simulation of one-dimensional quantum many-body systems
,”
Phys. Rev. Lett.
93
,
040502
(
2004
).
36.
S. R.
White
and
A. E.
Feiguin
, “
Real-time evolution using the density matrix renormalization group
,”
Phys. Rev. Lett.
93
,
076401
(
2004
).
37.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
, “
The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
,”
Nat. Phys.
9
,
113
118
(
2013
).
38.
E.
Ronca
,
Z.
Li
,
C. A.
Jimenez-Hoyos
, and
G. K.-L.
Chan
, “
Time-step targeting time-dependent and dynamical density matrix renormalization group algorithms with ab initio Hamiltonians
,”
J. Chem. Theory Comput.
13
,
5560
5571
(
2017
).
39.
Y.
Yao
,
K.-W.
Sun
,
Z.
Luo
, and
H.
Ma
, “
Full quantum dynamics simulation of a realistic molecular system using the adaptive time-dependent density matrix renormalization group method
,”
J. Phys. Chem. Lett.
9
,
413
419
(
2018
).
40.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
41.
A.
Baiardi
and
M.
Reiher
, “
Large-scale quantum dynamics with matrix product states
,”
J. Chem. Theory Comput.
15
,
3481
3498
(
2019
).
42.
B.
Kloss
,
D. R.
Reichman
, and
R.
Tempelaar
, “
Multiset matrix product state calculations reveal mobile Franck–Condon excitations under strong Holstein-type coupling
,”
Phys. Rev. Lett.
123
,
126601
(
2019
).
43.
X.
Xie
,
Y.
Liu
,
Y.
Yao
,
U.
Schollwöck
,
C.
Liu
, and
H.
Ma
, “
Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems
,”
J. Chem. Phys.
151
,
224101
(
2019
).
44.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Finite-temperature TD-DMRG for the carrier mobility of organic semiconductors
,”
J. Phys. Chem. Lett.
11
,
4930
4936
(
2020
).
45.
C.
Hubig
,
I.
McCulloch
, and
U.
Schollwöck
, “
Generic construction of efficient matrix product operators
,”
Phys. Rev. B
95
,
035129
(
2017
).
46.
J.
Ren
,
W.
Li
,
T.
Jiang
, and
Z.
Shuai
, “
A general automatic method for optimal construction of matrix product operators using bipartite graph theory
,”
J. Chem. Phys.
153
,
084118
(
2020
).
47.
A.
Jäckle
and
H. D.
Meyer
, “
Product representation of potential energy surfaces
,”
J. Chem. Phys.
104
,
7974
7984
(
1996
).
48.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Using neural networks to represent potential surfaces as sums of products
,”
J. Chem. Phys.
125
,
194105
(
2006
).
49.
A. E.
Feiguin
and
S. R.
White
, “
Finite-temperature density matrix renormalization using an enlarged Hilbert space
,”
Phys. Rev. B
72
,
220401
(
2005
).
50.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
).
51.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
,
M.
Borkowska-Panek
,
I.
Carnimeo
, and
P.
Panek
, “
Toward anharmonic computations of vibrational spectra for large molecular systems
,”
Int. J. Quantum Chem.
112
,
2185
2200
(
2012
).
52.
M.
Sibaev
and
D. L.
Crittenden
, “
An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates
,”
J. Chem. Phys.
144
,
214107
(
2016
).
53.
G.
Li
,
C.
Rosenthal
, and
H.
Rabitz
, “
High dimensional model representations
,”
J. Phys. Chem. A
105
,
7765
7777
(
2001
).
54.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
, “
MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules
,”
Int. Rev. Phys. Chem.
22
,
533
549
(
2003
).
55.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
, “
Full-dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state
,”
J. Chem. Phys.
127
,
184302
(
2007
).
56.
J. R.
Reimers
, “
A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules
,”
J. Chem. Phys.
115
,
9103
9109
(
2001
).
57.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
Accurate simulation of resonance-Raman spectra of flexible molecules: An internal coordinates approach
,”
J. Chem. Theory Comput.
11
,
3267
3280
(
2015
).
58.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
, “
Generalized discrete variable approximation in quantum mechanics
,”
J. Chem. Phys.
82
,
1400
1409
(
1985
).
59.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
, “
Time-evolution methods for matrix-product states
,”
Ann. Phys.
411
,
167998
(
2019
).
60.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes
,”
J. Chem. Phys.
152
,
024127
(
2020
).
61.
H.-D.
Meyer
and
H.
Wang
, “
On regularizing the MCTDH equations of motion
,”
J. Chem. Phys.
148
,
124105
(
2018
).
63.
X. K.
Chen
,
Y.
Tsuchiya
,
Y.
Ishikawa
,
C.
Zhong
,
C.
Adachi
, and
J. L.
Brédas
, “
A new design strategy for efficient thermally activated delayed fluorescence organic emitters: From twisted to planar structures
,”
Adv. Mater.
29
,
1702767
(
2017
).
64.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, GAUSSIAN 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
65.
Z.
Shuai
, “
Thermal vibration correlation function formalism for molecular excited state decay rates
,”
Chin. J. Chem.
38
,
1223
1232
(
2020
).
66.
O.
Christiansen
, Midascpp, https://gitlab.com/midascpp/midascpp.
67.
M.
Sparta
,
D.
Toffoli
, and
O.
Christiansen
, “
An adaptive density-guided approach for the generation of potential energy surfaces of polyatomic molecules
,”
Theor. Chem. Acc.
123
,
413
429
(
2009
).
68.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
2006
).
69.
J.
Mei
,
N. L. C.
Leung
,
R. T. K.
Kwok
,
J. W. Y.
Lam
, and
B. Z.
Tang
, “
Aggregation-induced emission: Together we shine, united we soar!
,”
Chem. Rev.
115
,
11718
11940
(
2015
).

Supplementary Material

You do not currently have access to this content.