Benchmarking calculations on excited states of models of phenylalanine protein chains are presented to assess the ability of alternative methods to the standard and most commonly used multiconfigurational wave function-based method, the complete active space self-consistent field (CASSCF), in recovering the non-dynamical correlation for systems that become not affordable by the CASSCF. The exploration of larger active spaces beyond the CASSCF limit is benchmarked through three strategies based on the reduction in the number of determinants: the restricted active space self-consistent field, the generalized active space self-consistent field (GASSCF), and the occupation-restricted multiple active space (ORMAS) schemes. The remaining dynamic correlation effects are then added by the complete active space second-order perturbation theory and by the multireference difference dedicated configuration interaction methods. In parallel, the approximate second-order coupled cluster (CC2), already proven to be successful for small building blocks of model proteins in one of our previous works [Ben Amor et al., J. Chem. Phys. 148, 184105 (2018)], is investigated to assess its performances for larger systems. Among the different alternative strategies to CASSCF, our results highlight the greatest efficiency of the GASSCF and ORMAS schemes in the systematic reduction of the configuration interaction expansion without loss of accuracy in both nature and excitation energies of both singlet ππ* and nπ*CO excited states with respect to the equivalent CASSCF calculations. Guidelines for an optimum applicability of this scheme to systems requiring active spaces beyond the complete active space limit are then proposed. Finally, the extension of the CC2 method to such large systems without loss of accuracy is demonstrated, highlighting the great potential of this method to treat accurately excited states, mainly single reference, of very large systems.

1.
L.
González
,
D.
Escudero
, and
L.
Serrano-Andrés
,
ChemPhysChem
13
,
28
(
2012
).
2.
M. E.
Casida
and
M.
Huix-Rotllant
,
Annu. Rev. Phys. Chem.
63
,
287
(
2012
).
3.
K.
Sneskov
and
O.
Christiansen
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
566
(
2012
).
4.
D.
Roca-Sanjuán
,
F.
Aquilante
, and
R.
Lindh
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
585
(
2012
).
5.
N.
Ben Amor
,
S.
Hoyau
,
D.
Maynau
, and
V.
Brenner
,
J. Chem. Phys.
148
,
184105
(
2018
).
6.
M.-S.
Dupuy
,
E.
Gloaguen
,
B.
Tardivel
,
M.
Mons
, and
V.
Brenner
,
J. Chem. Theory Comput.
16
,
601
(
2020
).
7.
M.
Mališ
,
Y.
Loquais
,
E.
Gloaguen
,
H. S.
Biswal
,
F.
Piuzzi
,
B.
Tardivel
,
V.
Brenner
,
M.
Broquier
,
C.
Jouvet
,
M.
Mons
,
N.
Došlić
, and
I.
Ljubić
,
J. Am. Chem. Soc.
134
,
20340
(
2012
).
8.
M.
Mališ
,
Y.
Loquais
,
E.
Gloaguen
,
C.
Jouvet
,
V.
Brenner
,
M.
Mons
,
I.
Ljubić
, and
N.
Došlić
,
Phys. Chem. Chem. Phys.
16
,
2285
(
2014
).
9.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
10.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
11.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
(
2000
).
12.
C.
Hättig
and
A.
Köhn
,
J. Chem. Phys.
117
,
6939
(
2002
).
13.
C.
Hättig
,
J. Chem. Phys.
118
,
7751
(
2003
).
14.
A.
Köhn
and
C.
Hättig
,
J. Chem. Phys.
119
,
5021
(
2003
).
15.
B.
Bories
,
D.
Maynau
, and
M.-L.
Bonnet
,
J. Comput. Chem.
28
,
632
(
2007
).
16.
N.
Ben Amor
,
F.
Bessac
,
S.
Hoyau
, and
D.
Maynau
,
J. Chem. Phys.
135
,
014101
(
2011
).
17.
C.
Chang
,
C. J.
Calzado
,
N. B.
Amor
,
J. S.
Marin
, and
D.
Maynau
,
J. Chem. Phys.
137
,
104102
(
2012
).
18.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
,
Chem. Phys.
48
,
157
(
1980
).
19.
G.
Das
and
A. C.
Wahl
,
J. Chem. Phys.
44
,
87
(
1966
).
20.
G.
Das
and
A. C.
Wahl
,
J. Chem. Phys.
47
,
2934
(
1967
).
21.
K.
Ruedenberg
and
K. R.
Sundberg
, in
Quantum Science, Methods and Structure: A Tribute to Per-Olov Löwdin
, edited by
J.-L.
Calais
,
O.
Goscinski
,
J.
Linderberg
, and
Y.
Öhrn
(
Springer US
,
Boston, MA
,
1976
), pp.
505
515
.
22.
A. I.
Panin
and
K. V.
Simon
,
Int. J. Quantum Chem.
59
,
471
(
1996
).
23.
A. I.
Panin
and
O. V.
Sizova
,
J. Comput. Chem.
17
,
178
(
1996
).
24.
Y. G.
Khait
,
J.
Song
, and
M. R.
Hoffmann
,
Int. J. Quantum Chem.
99
,
210
(
2004
).
25.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
26.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
27.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
,
J. Chem. Phys.
114
,
4775
(
2001
).
28.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
119
,
2963
(
2003
).
29.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
,
J. Chem. Phys.
135
,
044128
(
2011
).
30.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
de Jong
,
J. Chem. Phys.
147
,
184111
(
2017
).
31.
J.
Ivanic
,
J. Chem. Phys.
119
,
9364
(
2003
).
32.
J.
Ivanic
and
K.
Ruedenberg
,
J. Comput. Chem.
24
,
1250
(
2003
).
33.
K.
Hirao
,
Chem. Phys. Lett.
201
,
59
(
1993
).
34.
K.
Hirao
,
Chem. Phys. Lett.
196
,
397
(
1992
).
35.
H.
Nakano
,
Chem. Phys. Lett.
207
,
372
(
1993
).
36.
H.
Nakano
,
J. Chem. Phys.
99
,
7983
(
1993
).
37.
K.
Andersson
,
P. Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
38.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
39.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
40.
P. Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
41.
L.
Roskop
and
M. S.
Gordon
,
J. Chem. Phys.
135
,
044101
(
2011
).
42.
D.
Ma
,
G.
Li Manni
,
J.
Olsen
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
12
,
3208
(
2016
).
43.
G.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
,
Comput. Mater. Sci.
28
,
222
(
2003
).
44.
V.
Veryazov
,
P.-O.
Widmark
,
L.
Serrano-Andrés
,
R.
Lindh
, and
B. O.
Roos
,
Int. J. Quantum Chem.
100
,
626
(
2004
).
45.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
,
J. Comput. Chem.
31
,
224
(
2010
).
46.
F.
Aquilante
,
J.
Autschbach
,
R. K.
Carlson
,
L. F.
Chibotaru
,
M. G.
Delcey
,
L.
De Vico
,
I.
Fdez. Galván
,
N.
Ferré
,
L. M.
Frutos
,
L.
Gagliardi
,
M.
Garavelli
,
A.
Giussani
,
C. E.
Hoyer
,
G.
Li Manni
,
H.
Lischka
,
D.
Ma
,
P. Å.
Malmqvist
,
T.
Müller
,
A.
Nenov
,
M.
Olivucci
,
T. B.
Pedersen
,
D.
Peng
,
F.
Plasser
,
B.
Pritchard
,
M.
Reiher
,
I.
Rivalta
,
I.
Schapiro
,
J.
Segarra-Martí
,
M.
Stenrup
,
D. G.
Truhlar
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
V. P.
Vysotskiy
,
O.
Weingart
,
F.
Zapata
, and
R.
Lindh
,
J. Comput. Chem.
37
,
506
(
2016
).
47.
J.
Miralles
,
J.-P.
Daudey
, and
R.
Caballol
,
Chem. Phys. Lett.
198
,
555
(
1992
).
48.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
,
Chem. Phys.
172
,
33
(
1993
).
49.
D.
Kats
and
H.-J.
Werner
,
J. Chem. Phys.
150
,
214107
(
2019
).
50.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
094111
(
2016
).
51.
O.
Demel
,
J.
Pittner
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
3104
(
2015
).
52.
T. S.
Chwee
,
A. B.
Szilva
,
R.
Lindh
, and
E. A.
Carter
,
J. Chem. Phys.
128
,
224106
(
2008
).
53.
D.
Walter
,
A. B.
Szilva
,
K.
Niedfeldt
, and
E. A.
Carter
,
J. Chem. Phys.
117
,
1982
(
2002
).
54.
T. S.
Chwee
and
E. A.
Carter
,
J. Chem. Theory Comput.
7
,
103
(
2011
).
55.
TURBOMOLE, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH,
2012
.
56.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
(
2014
).
57.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
58.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
59.
C. L.
Janssen
and
I. M. B.
Nielsen
,
Chem. Phys. Lett.
290
,
423
(
1998
).
60.
I. M. B.
Nielsen
and
C. L.
Janssen
,
Chem. Phys. Lett.
310
,
568
(
1999
).
61.
X.
Assfeld
,
T.
Etienne
,
A.
Monari
, and
T.
Véry
, Nancy-EX, https://sourceforge.net/projects/nancyex/.
62.
T.
Etienne
,
X.
Assfeld
, and
A.
Monari
,
J. Chem. Theory Comput.
10
,
3896
(
2014
).
63.
T.
Etienne
,
X.
Assfeld
, and
A.
Monari
,
J. Chem. Theory Comput.
10
,
3906
(
2014
).
64.
K. D.
Vogiatzis
,
G.
Li Manni
,
S. J.
Stoneburner
,
D.
Ma
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
11
,
3010
(
2015
).
65.
M. S.
Gordon
and
M. W.
Schmidt
,
Theory and Applications of Computational Chemistry
(
Elsevier
,
2005
), pp.
1167
1189
.
66.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
67.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
,
J. Chem. Phys.
152
,
154102
(
2020
).
68.
D.
Maynau
,
S.
Evangelisti
,
N.
Guihéry
,
C. J.
Calzado
, and
J.-P.
Malrieu
,
J. Chem. Phys.
116
,
10060
(
2002
).
69.
D.
Maynau
, DoLo, a development of Laboratoire de Chimie et Physique Quantiques de Toulouse, https://git.irsamc.ups-tlse.fr/LCPQ/Cost_package.
70.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
71.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
72.
F.
Aquilante
,
P.-Å.
Malmqvist
,
T. B.
Pedersen
,
A.
Ghosh
, and
B. O.
Roos
,
J. Chem. Theory Comput.
4
,
694
(
2008
).
73.
B. O.
Roos
,
K.
Andersson
,
M. P.
Fülscher
,
L.
Serrano-Andrés
,
K.
Pierloot
,
M.
Merchán
, and
V.
Molina
,
J. Mol. Struct.: THEOCHEM
388
,
257
(
1996
).
74.
N.
Forsberg
and
P.-Å.
Malmqvist
,
Chem. Phys. Lett.
274
,
196
(
1997
).
75.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
76.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
77.
N.
Ben Amor
,
B.
Bories
,
S.
Hoyau
, and
D.
Maynau
, EXSCI, https://git.irsamc.ups-tlse.fr/LCPQ/Cost_package.
78.
J. P.
Zobel
,
J. J.
Nogueira
, and
L.
González
,
Chem. Sci.
8
,
1482
(
2017
).

Supplementary Material

You do not currently have access to this content.