Locally range-separated hybrid (LRSH) functionals feature a real-space-dependent range separation function (RSF) instead of a system-independent range-separation parameter, which thus enables a more flexible admixture of exact exchange than conventional range-separated hybrid functionals. In particular, the development of suitable RSF models and exploring the capabilities of the LRSH approach, in general, are tasks that require further investigations and will be addressed in this work. We propose a non-empirical scheme based on a detailed scaling analysis with respect to a uniform coordinate scaling and on a short-range expansion of the range-separated exchange energy density to derive new RSF models from a gradient expansion of the exchange energy density. After optimizing a small set of empirical parameters introduced to enhance their flexibility, the resulting second- and fourth-order RSFs are evaluated with respect to atomic exchange energies, atomization energies, and transition barrier heights.

1.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
2.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
3.
T.
Tsuneda
and
K.
Hirao
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
375
(
2014
).
4.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, Theoretical and Computational Chemistry Vol. 4, edited by
J.
Seminario
(
Elsevier
,
1996
), pp.
327
357
.
5.
A.
Savin
and
H.-J.
Flad
,
Int. J. Quantum Chem.
56
,
327
(
1995
).
6.
J.
Paquier
and
J.
Toulouse
,
J. Chem. Phys.
149
,
174110
(
2018
).
7.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Phys. Rev. A
70
,
062505
(
2004
).
8.
J.
Toulouse
,
P.
Gori-Giorgi
, and
A.
Savin
,
Int. J. Quantum Chem.
106
,
2026
(
2006
).
9.
A.
Savin
,
J. Chem. Phys.
153
,
160901
(
2020
).
10.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
11.
N.
Mardirossian
and
M.
Head-Gordon
,
Mol. Phys.
115
,
2315
(
2017
).
12.
J.
Toulouse
,
A.
Savin
, and
H.-J.
Flad
,
Int. J. Quantum Chem.
100
,
1047
(
2004
).
13.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
15.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
16.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
17.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
18.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
19.
T. M.
Henderson
,
A. F.
Izmaylov
,
G. E.
Scuseria
, and
A.
Savin
,
J. Chem. Phys.
127
,
221103
(
2007
).
20.
C.-W.
Wang
,
K.
Hui
, and
J.-D.
Chai
,
J. Chem. Phys.
145
,
204101
(
2016
).
21.
N. A.
Besley
,
M. J. G.
Peach
, and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
11
,
10350
(
2009
).
22.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
148
,
241736
(
2018
).
23.
M.
Casanova-Páez
,
M. B.
Dardis
, and
L.
Goerigk
,
J. Chem. Theory Comput.
15
,
4735
(
2019
).
24.
A. D.
Laurent
and
D.
Jacquemin
,
Int. J. Quantum Chem.
113
,
2019
(
2013
).
25.
T.
Körzdörfer
,
J. S.
Sears
,
C.
Sutton
, and
J.-L.
Brédas
,
J. Chem. Phys.
135
,
204107
(
2011
).
26.
D.
Jacquemin
,
B.
Moore
 II
,
A.
Planchat
,
C.
Adamo
, and
J.
Autschbach
,
J. Chem. Theory Comput.
10
,
1677
(
2014
).
27.
A.
Karolewski
,
L.
Kronik
, and
S.
Kümmel
,
J. Chem. Phys.
138
,
204115
(
2013
).
28.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
29.
Y.
Imamura
,
R.
Kobayashi
, and
H.
Nakai
,
Int. J. Quantum Chem.
113
,
245
(
2013
).
30.
Z.
Lin
and
T.
van Voorhis
,
J. Chem. Theory Comput.
15
,
1226
(
2019
).
31.
A. V.
Krukau
,
G. E.
Scuseria
,
J. P.
Perdew
, and
A.
Savin
,
J. Chem. Phys.
129
,
124103
(
2008
).
32.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Phys. Chem. A
112
,
12530
(
2008
).
33.
S.
Klawohn
and
H.
Bahmann
,
J. Chem. Theory Comput.
16
,
953
(
2020
).
34.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
35.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
36.
T. M.
Maier
,
Y.
Ikabata
, and
H.
Nakai
,
J. Chem. Phys.
152
,
214103
(
2020
).
37.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
38.
T. M.
Maier
,
Y.
Ikabata
, and
H.
Nakai
,
J. Chem. Theory Comput.
15
,
4745
(
2019
).
39.
H.
Laqua
,
T. H.
Thompson
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
16
,
1456
(
2020
).
40.
H.
Bahmann
and
M.
Kaupp
,
J. Chem. Theory Comput.
11
,
1540
(
2015
).
41.
T.
Aschebrock
and
S.
Kümmel
,
J. Chem. Phys.
151
,
154108
(
2019
).
42.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
43.
44.
M.
Levy
,
Int. J. Quantum Chem.
36
,
617
(
1989
).
45.
A. D.
Becke
,
Int. J. Quantum Chem.
23
,
1915
(
1983
).
46.
P. S.
Svendsen
and
U.
von Barth
,
Phys. Rev. B
54
,
17402
(
1996
).
47.
R.
Wang
,
Y.
Zhou
, and
M.
Ernzerhof
,
Phys. Rev. A
96
,
022502
(
2017
).
48.
A. V.
Arbuznikov
and
M.
Kaupp
,
J. Chem. Phys.
136
,
014111
(
2012
).
49.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
50.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
51.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
52.
T.
Schmidt
,
E.
Kraisler
,
L.
Kronik
, and
S.
Kümmel
,
Phys. Chem. Chem. Phys.
16
,
14357
(
2014
).
53.
L.
Calderín
,
Phys. Rev. A
86
,
032510
(
2012
).
54.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
55.
M.
Seidl
,
J. P.
Perdew
, and
M.
Levy
,
Phys. Rev. A
59
,
51
(
1999
).
56.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
57.
A. D.
Becke
,
J. Chem. Phys.
122
,
064101
(
2005
).
58.
A. D.
Becke
,
J. Chem. Phys.
138
,
074109
(
2013
).
59.
Y.
Imamura
,
T.
Otsuka
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2067
(
2007
).
60.
Y.
Imamura
and
H.
Nakai
,
Chem. Phys. Lett.
419
,
297
(
2006
).
61.
Y.
Imamura
and
H.
Nakai
,
Int. J. Quantum Chem.
107
,
23
(
2007
).
62.
Y.
Jin
and
R. J.
Bartlett
,
J. Chem. Phys.
149
,
064111
(
2018
).
63.
J. W.
Furness
and
J.
Sun
,
Phys. Rev. B
99
,
041119(R)
(
2019
).
64.
T. M.
Maier
,
Y.
Ikabata
, and
H.
Nakai
,
J. Chem. Phys.
151
,
174114
(
2019
).
65.
J. P.
Perdew
,
J.
Tao
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
6898
(
2004
).
66.
H.
Bahmann
,
A.
Rodenberg
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
J. Chem. Phys.
126
,
011103
(
2007
).
67.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
68.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
69.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
70.
M.
Hayami
,
J.
Seino
,
Y.
Nakajima
,
M.
Nakano
,
Y.
Ikabata
,
T.
Yoshikawa
,
T.
Oyama
,
K.
Hiraga
,
S.
Hirata
, and
H.
Nakai
,
J. Comput. Chem.
39
,
2333
(
2018
).
71.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
72.
E. V. R.
de Castro
and
F. E.
Jorge
,
J. Chem. Phys.
108
,
5225
(
1998
).
73.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
74.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
75.
B. J.
Lynch
and
D. G.
Truhlar
,
J. Phys. Chem. A
107
,
8996
(
2003
).
76.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
77.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
78.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
79.
M.
Haasler
,
T. M.
Maier
,
R.
Grotjahn
,
S.
Gückel
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
J. Chem. Theory Comput.
16
,
5645
(
2020
).
80.
J. A.
Nelder
and
R.
Mead
,
Comput. J.
7
,
308
(
1965
).
81.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
82.
J.-W.
Song
,
T.
Hirosawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
154105
(
2007
).
You do not currently have access to this content.