We investigate the anomalous dynamics in smectic phases of short host rods where, counter-intuitively, long guest rod-shaped particles diffuse faster than the short host ones due to their precise size mismatch. In addition to the previously reported mean-square displacement, we analyze the time evolution of the self-Van Hove functions G(r, t), as this probability density function uncovers intrinsic heterogeneous dynamics. Through this analysis, we show that the dynamics of the host particles parallel to the director becomes non-Gaussian and therefore heterogeneous after the nematic-to-smectic-A phase transition, even though it exhibits a nearly diffusive behavior according to its mean-squared displacement. In contrast, the non-commensurate guest particles display Gaussian dynamics of the parallel motion, up to the transition to the smectic-B phase. Thus, we show that the self-Van Hove function is a very sensitive probe to account for the instantaneous and heterogeneous dynamics of our system and should be more widely considered as a quantitative and complementary approach of the classical mean-squared displacement characterization in diffusion processes.

1.
A.
Einstein
,
Ann. Phys.
(
Berlin
)
322
,
549
(
1905
).
2.
J.
Perrin
,
Atoms
(
Constable
,
London
,
1916
).
3.
J. M.
Burgers
,
Second Report on Viscosity and Plasticity
(
Amsterdam Academy of Science
,
Nordeman, Amsterdam
,
1938
), p.
3
.
4.
D. S.
Banks
and
C.
Fradin
,
Biophys. J.
89
,
2960
(
2005
).
5.
J. A.
Dix
and
A. S.
Verkman
,
Annu. Rev. Biophys.
37
,
247
(
2008
).
6.
I. M.
Sokolov
,
Soft Matter
8
,
9043
(
2012
).
7.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
918
(
1978
).
8.
E. R.
Weeks
and
D. A.
Weitz
,
Chem. Phys.
89
,
095704
(
2002
).
9.
P.
Chaudhuri
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
99
,
060604
(
2007
).
10.
G. H.
Koenderink
,
H. Y.
Zhang
,
D. G. A. L.
Aarts
,
M. P.
Lettinga
,
A. P.
Philipse
, and
G.
Nägele
,
Faraday Discuss.
123
,
335
(
2003
).
11.
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
,
Phys. Rev. Lett.
92
,
178101
(
2004
).
12.
K.
Kang
,
J.
Gapinski
,
M. P.
Lettinga
,
J.
Buitenhuis
,
G.
Meier
,
M.
Ratajczyk
,
J. K. G.
Dhont
, and
A.
Patkowski
,
J. Chem. Phys.
122
,
044905
(
2005
).
13.
J.
van der Gucht
,
N. A. M.
Besseling
,
W.
Knoben
,
L.
Bouteiller
, and
M. A. C.
Stuart
,
Phys. Rev. E
67
,
051106
(
2003
).
14.
L.
Alvarez
,
M. P.
Lettinga
, and
E.
Grelet
,
Phys. Rev. Lett.
118
,
178002
(
2017
).
15.
M.
Chiappini
,
E.
Grelet
, and
M.
Dijkstra
,
Phys. Rev. Lett.
124
,
087801
(
2020
).
16.
Z.
Dogic
and
S.
Fraden
,
Curr. Opin. Colloid Interface Sci.
11
,
47
(
2006
).
17.
18.
19.
M. P.
Lettinga
,
E.
Barry
, and
Z.
Dogic
,
Europhys. Lett.
71
,
692
(
2005
).
20.
A.
Modlinska
,
A. M.
Alsayed
, and
T.
Gibaud
,
Sci. Rep.
5
,
18432
(
2015
).
21.
M. P.
Lettinga
and
E.
Grelet
,
Phys. Rev. Lett.
99
,
197802
(
2007
).
22.
E.
Pouget
,
E.
Grelet
, and
M. P.
Lettinga
,
Phys. Rev. E
84
,
041704
(
2011
).
23.
A.
Repula
,
M.
Oshima Menegon
,
C.
Wu
,
P.
van der Schoot
, and
E.
Grelet
,
Phys. Rev. Lett.
122
,
128008
(
2019
).
24.
S.
Naderi
,
E.
Pouget
,
P.
Ballesta
,
P.
van der Schoot
,
M. P.
Lettinga
, and
E.
Grelet
,
Phys. Rev. Lett.
111
,
037801
(
2013
).
25.
B.
Wang
,
J.
Kuo
,
S. C.
Bae
, and
S.
Granick
,
Nat. Mater.
11
,
481
(
2012
).
26.
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
).
27.
E. R.
Weeks
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
,
Science
287
,
627
(
2000
).
28.
E. R.
Weeks
and
D. A.
Weitz
,
Chem. Phys.
284
,
361
(
2002
).
29.
T. O. E.
Skinner
,
S. K.
Schnyder
,
D.
Aarts
,
J.
Horbach
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
111
,
128301
(
2013
).
30.
B.
Wang
,
S. M.
Anthony
,
S. C.
Bae
, and
S.
Granick
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
15160
(
2009
).
31.
T.
Turiv
,
I.
Lazo
,
A.
Brodin
,
B. I.
Lev
,
V.
Reiffenrath
,
V. G.
Nazarenko
, and
O. D.
Lavrentovich
,
Science
342
,
1351
(
2013
).
32.
C.
Tsallis
,
S. V. F.
Levy
,
A. M. C.
Souza
, and
R.
Maynard
,
Phys. Rev. Lett.
75
,
3589
(
1995
).
33.
A. V.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I. M.
Sokolov
,
Phys. Rev. X
7
,
021002
(
2017
).
34.
M. V.
Chubynsky
and
G. W.
Slater
,
Phys. Rev. Lett.
113
,
098302
(
2014
).
35.
E.
Barry
,
D.
Beller
, and
Z.
Dogic
,
Soft Matter
5
,
2563
(
2009
).
36.
P.
Sharma
,
A.
Ward
,
T.
Gibaud
,
M. F.
Hagan
, and
Z.
Dogic
,
Nature
513
,
77
(
2014
).
37.
T.
Maniatis
,
J.
Sambrook
, and
E. F.
Fritsch
,
A Laboratory Manual
(
Cold Spring Harbor Laboratory Press
,
1986
).
38.
C.
Dalle-Ferrier
,
M.
Krüger
,
R. D. L.
Hanes
,
S.
Walta
,
M. C.
Jenkins
, and
S. U.
Egelhaaf
,
Soft Matter
7
,
2064
(
2011
).
39.
A.
Cuetos
,
N.
Morillo
, and
A.
Patti
,
Phys. Rev. E
98
,
042129
(
2018
).
You do not currently have access to this content.