Photoswitchable diarylethenes (DAEs), over years of intense fundamental and applied research, have been established among the most commonly chosen molecular photoswitches, often employed as controlling units in molecular devices and smart materials. At the same time, providing reliable explanation for their photophysical behavior, especially the mechanism of the photo-cycloreversion transformation, turned out to be a highly challenging task. Herein, we investigate this mechanism in detail by means of multireference semi-empirical quantum chemistry calculations, allowing, for the first time, for a balanced treatment of the static and dynamic correlation effects, both playing a crucial role in DAE photochemistry. In the course of our study, we find the second singlet excited state of double electronic-excitation character to be the key to understanding the nature of the photo-cycloreversion transformation in DAE molecular photoswitches.

1.
M.
Irie
,
T.
Fukaminato
,
K.
Matsuda
, and
S.
Kobatake
, “
Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators
,”
Chem. Rev.
114
,
12174
12277
(
2014
).
2.
J.
Zhang
and
H.
Tian
, “
The endeavor of diarylethenes: New structures, high performance, and bright future
,”
Adv. Opt. Mater.
6
,
1701278
(
2018
).
3.
S.
Takami
,
S.
Kobatake
,
T.
Kawai
, and
M.
Irie
, “
Extraordinarily high thermal stability of the closed-ring isomer of 1,2-bis(5-methyl-2-phenylthiazol-4-yl)perfluorocyclopentene
,”
Chem. Lett.
32
,
892
893
(
2003
).
4.
H.
Jean-Ruel
,
R. R.
Cooney
,
M.
Gao
,
C.
Lu
,
M. A.
Kochman
,
C. A.
Morrison
, and
R. J. D.
Miller
, “
Femtosecond dynamics of the ring closing process of diarylethene: A case study of electrocyclic reactions in photochromic single crystals
,”
J. Phys. Chem. A
115
,
13158
13168
(
2011
).
5.
H.
Jean-Ruel
,
M.
Gao
,
M. A.
Kochman
,
C.
Lu
,
L. C.
Liu
,
R. R.
Cooney
,
C. A.
Morrison
, and
R. J. D.
Miller
, “
Ring-closing reaction in diarylethene captured by femtosecond electron crystallography
,”
J. Phys. Chem. B
117
,
15894
15902
(
2013
).
6.
R. J. D.
Miller
, “
Femtosecond crystallography with ultrabright electrons and x-rays: Capturing chemistry in action
,”
Science
343
,
1108
1116
(
2014
).
7.
K.
Uno
,
M. L.
Bossi
,
V. N.
Belov
,
M.
Irie
, and
S. W.
Hell
, “
Multicolour fluorescent ‘sulfide–sulfone’ diarylethenes with high photo-fatigue resistance
,”
Chem. Commun.
56
,
2198
2201
(
2020
).
8.
A.
Jarota
,
E.
Pastorczak
,
W.
Tawfik
,
B.
Xue
,
R.
Kania
,
H.
Abramczyk
, and
T.
Kobayashi
, “
Exploring the ultrafast dynamics of a diarylethene derivative using sub-10 fs laser pulses
,”
Phys. Chem. Chem. Phys.
21
,
192
204
(
2019
).
9.
C. R.
Honick
,
G. M.
Peters
,
J. D.
Young
,
J. D.
Tovar
, and
A. E.
Bragg
, “
Core structure dependence of cycloreversion dynamics in diarylethene analogs
,”
Phys. Chem. Chem. Phys.
22
,
3314
(
2020
).
10.
J.
Koo
,
Y.
Jang
,
L.
Martin
,
D.
Kim
,
H.
Jeong
,
K.
Kang
,
W.
Lee
,
J.
Kim
,
W.-T.
Hwang
,
D.
Xiang
,
E.
Scheer
,
M.
Kabdulov
,
T.
Huhn
,
F.
Pauly
, and
T.
Lee
, “
Unidirectional real-time photoswitching of diarylethene molecular monolayer junctions with multilayer graphene electrodes
,”
ACS Appl. Mater. Interfaces
11
,
11645
11653
(
2019
).
11.
X.
Huang
and
T.
Li
, “
Recent progress in the development of molecular-scale electronics based on photoswitchable molecules
,”
J. Mater. Chem. C
8
,
821
848
(
2020
).
12.
I.
Hnid
,
D.
Frath
,
F.
Lafolet
,
X.
Sun
, and
J.-C.
Lacroix
, “
Highly efficient photoswitch in diarylethene-based molecular junctions
,”
J. Am. Chem. Soc.
142
,
7732
7736
(
2020
).
13.
J.
Zhang
,
J.
Wang
, and
H.
Tian
, “
Taking orders from light: Progress in photochromic bio-materials
,”
Mater. Horiz.
1
,
169
184
(
2014
).
14.
Z. L.
Pianowski
, “
Recent implementations of molecular photoswitches into smart materials and biological systems
,”
Chem. - Eur. J.
25
,
5128
5144
(
2019
).
15.
X.
Dong
,
F.
Tong
,
K. M.
Hanson
,
R. O.
Al-Kaysi
,
D.
Kitagawa
,
S.
Kobatake
, and
C. J.
Bardeen
, “
Hybrid organic–inorganic photon-powered actuators based on aligned diarylethene nanocrystals
,”
Chem. Mater.
31
,
1016
1022
(
2019
).
16.
J.
Su
,
T.
Fukaminato
,
J.-P.
Placial
,
T.
Onodera
,
R.
Suzuki
,
H.
Oikawa
,
A.
Brosseau
,
F.
Brisset
,
R.
Pansu
,
K.
Nakatani
, and
R.
Métivier
, “
Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles
,”
Angew. Chem., Int. Ed.
55
,
3662
3666
(
2016
).
17.
T.
Fukaminato
,
S.
Ishida
, and
R.
Métivier
, “
Photochromic fluorophores at the molecular and nanoparticle levels: Fundamentals and applications of diarylethenes
,”
NPG Asia Mater.
10
,
859
881
(
2018
).
18.
Y.
Arai
,
S.
Ito
,
H.
Fujita
,
Y.
Yoneda
,
T.
Kaji
,
S.
Takei
,
R.
Kashihara
,
M.
Morimoto
,
M.
Irie
, and
H.
Miyasaka
, “
One-colour control of activation, excitation and deactivation of a fluorescent diarylethene derivative in super-resolution microscopy
,”
Chem. Commun.
53
,
4066
4069
(
2017
).
19.
O.
Nevskyi
,
D.
Sysoiev
,
J.
Dreier
,
S. C.
Stein
,
A.
Oppermann
,
F.
Lemken
,
T.
Janke
,
J.
Enderlein
,
I.
Testa
,
T.
Huhn
, and
D.
Wöll
, “
Fluorescent diarylethene photoswitches—A universal tool for super-resolution microscopy in nanostructured materials
,”
Small
14
,
1703333
(
2018
).
20.
C.
Li
,
K.
Xiong
,
Y.
Chen
,
C.
Fan
,
Y.-L.
Wang
,
H.
Ye
, and
M.-Q.
Zhu
, “
Visible-light-driven photoswitching of aggregated-induced emission-active diarylethenes for super-resolution imaging
,”
ACS Appl. Mater. Interfaces
12
,
27651
27662
(
2020
).
21.
K.
Shimizu
,
R.
Métivier
, and
S.
Kobatake
, “
Synthesis and fluorescence on/off switching of hyperbranched polymers having diarylethene at the branching point
,”
J. Photochem. Photobiol., A
390
,
112341
(
2020
).
22.
T.
Fukaminato
,
T.
Doi
,
N.
Tamaoki
,
K.
Okuno
,
Y.
Ishibashi
,
H.
Miyasaka
, and
M.
Irie
, “
Single-molecule fluorescence photoswitching of a diarylethene−perylenebisimide dyad: Non-destructive fluorescence readout
,”
J. Am. Chem. Soc.
133
,
4984
4990
(
2011
).
23.
R.
Kashihara
,
M.
Morimoto
,
S.
Ito
,
H.
Miyasaka
, and
M.
Irie
, “
Fluorescence photoswitching of a diarylethene by irradiation with single-wavelength visible light
,”
J. Am. Chem. Soc.
139
,
16498
16501
(
2017
).
24.
K.
Zheng
,
S.
Han
,
X.
Zeng
,
Y.
Wu
,
S.
Song
,
H.
Zhang
, and
X.
Liu
, “
Rewritable optical memory through high-registry orthogonal upconversion
,”
Adv. Mater.
30
,
1801726
(
2018
).
25.
M.
Irie
,
K.
Sakemura
,
M.
Okinaka
, and
K.
Uchida
, “
Photochromism of dithienylethenes with electron-donating substituents
,”
J. Org. Chem.
60
,
8305
8309
(
1995
).
26.
K.
Shibata
,
K.
Muto
,
S.
Kobatake
, and
M.
Irie
, “
Photocyclization/cycloreversion quantum yields of diarylethenes in single crystals
,”
J. Phys. Chem. A
106
,
209
214
(
2002
).
27.
Y.
Ishibashi
,
T.
Umesato
,
S.
Kobatake
,
M.
Irie
, and
H.
Miyasaka
, “
Femtosecond laser photolysis studies on temperature dependence of cyclization and cycloreversion reactions of a photochromic diarylethene derivative
,”
J. Phys. Chem. C
116
,
4862
4869
(
2012
).
28.
K.
Morimitsu
,
S.
Kobatake
, and
M.
Irie
, “
Control of cycloreversion quantum yields of diarylethenes by introduction of substituents at the reactive carbons
,”
Mol. Cryst. Liq. Cryst.
431
,
451
454
(
2005
).
29.
H.
Sotome
,
K.
Une
,
T.
Nagasaka
,
S.
Kobatake
,
M.
Irie
, and
H.
Miyasaka
, “
A dominant factor of the cycloreversion reactivity of diarylethene derivatives as revealed by femtosecond time-resolved absorption spectroscopy
,”
J. Chem. Phys.
152
,
034301
(
2020
).
30.
K.
Morimitsu
,
S.
Kobatake
,
S.
Nakamura
, and
M.
Irie
, “
Efficient photocycloreversion reaction of diarylethenes by introduction of cyano subsutituents to the reactive carbons
,”
Chem. Lett.
32
,
858
859
(
2003
).
31.
Y.
Tatsumi
,
J.-i.
Kitai
,
W.
Uchida
,
K.
Ogata
,
S.
Nakamura
, and
K.
Uchida
, “
Photochromism of 1,2-bis(2-thienyl)perfluorocyclopentene derivatives: Substituent effect on the reactive carbon atoms
,”
J. Phys. Chem. A
116
,
10973
10979
(
2012
).
32.
M.
Morimoto
,
T.
Sumi
, and
M.
Irie
, “
Photoswitchable fluorescent diarylethene derivatives with thiophene 1,1-dioxide groups: Effect of alkyl substituents at the reactive carbons
,”
Materials
10
,
1021
(
2017
).
33.
R.
Hofsäβ
,
D.
Rombach
, and
H. A.
Wagenknecht
, “
Thieme chemistry journal awardees—Where are they now? The influence of electron-withdrawing groups at the 2- and 2′-positions of dibenzothienylethenes on molecular switching
,”
Synlett
28
,
1422
1426
(
2017
).
34.
D.
Dulić
,
T.
Kudernac
,
A.
Pužys
,
B. L.
Feringa
, and
B. J.
van Wees
, “
Temperature gating of the ring-opening process in diarylethene molecular switches
,”
Adv. Mater.
19
,
2898
2902
(
2007
).
35.
S.
Nakamura
and
M.
Irie
, “
Thermally irreversible photochromic systems. A theoretical study
,”
J. Org. Chem.
53
,
6136
6138
(
1988
).
36.
D.
Majumdar
,
H. M.
Lee
,
J.
Kim
,
K. S.
Kim
, and
B. J.
Mhin
, “
Photoswitch and nonlinear optical switch: Theoretical studies on 1,2-bis-(3-thienyl)-ethene derivatives
,”
J. Chem. Phys.
111
,
5866
5872
(
1999
).
37.
S.
Aloïse
,
M.
Sliwa
,
G.
Buntinx
,
S.
Delbaere
,
A.
Perrier
,
F.
Maurel
,
D.
Jacquemin
, and
M.
Takeshita
, “
Do inverse dithienylethenes behave as normal ones? A joint spectroscopic and theoretical investigation
,”
Phys. Chem. Chem. Phys.
15
,
6226
(
2013
).
38.
C.
Wiebeler
and
S.
Schumacher
, “
Quantum yields and reaction times of photochromic diarylethenes: Nonadiabatic ab initio molecular dynamics for normal- and inverse-type
,”
J. Phys. Chem. A
118
,
7816
7823
(
2014
).
39.
M. G.
Chiariello
,
U.
Raucci
,
F.
Coppola
, and
N.
Rega
, “
Unveiling anharmonic coupling by means of excited state ab initio dynamics: Application to diarylethene photoreactivity
,”
Phys. Chem. Chem. Phys.
21
,
3606
3614
(
2019
).
40.
A.
Jarota
,
E.
Pastorczak
, and
H.
Abramczyk
, “
A deeper look into the photocycloreversion of a yellow diarylethene photoswitch: Why is it so fast?
,”
Phys. Chem. Chem. Phys.
22
,
5408
5412
(
2020
).
41.
K.
Uchida
,
D.
Guillaumont
,
E.
Tsuchida
,
G.
Mochizuki
,
M.
Irie
,
A.
Murakami
, and
S.
Nakamura
, “
Theoretical study of an intermediate, a factor determining the quantum yield in photochromism of diarylethene derivatives
,”
J. Mol. Struct.: THEOCHEM
579
,
115
120
(
2002
).
42.
M.
Boggio-Pasqua
,
M.
Ravaglia
,
M. J.
Bearpark
,
M.
Garavelli
, and
M. A.
Robb
, “
Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics
,”
J. Phys. Chem. A
107
,
11139
11152
(
2003
).
43.
Y.
Asano
,
A.
Murakami
,
T.
Kobayashi
,
A.
Goldberg
,
D.
Guillaumont
,
S.
Yabushita
,
M.
Irie
, and
S.
Nakamura
, “
Theoretical study on the photochromic cycloreversion reactions of dithienylethenes; on the role of the conical intersections
,”
J. Am. Chem. Soc.
126
,
12112
12120
(
2004
).
44.
S.
Nakamura
,
T.
Kobayashi
,
A.
Takata
,
K.
Uchida
,
Y.
Asano
,
A.
Murakami
,
A.
Goldberg
,
D.
Guillaumont
,
S.
Yokojima
,
S.
Kobatake
, and
M.
Irie
, “
Quantum yields and potential energy surfaces: A theoretical study
,”
J. Phys. Org. Chem.
20
,
821
829
(
2007
).
45.
A.
Perrier
,
S.
Aloise
,
M.
Olivucci
, and
D.
Jacquemin
, “
Inverse versus normal dithienylethenes: Computational investigation of the photocyclization reaction
,”
J. Phys. Chem. Lett.
4
,
2190
2196
(
2013
).
46.
W.
Weber
and
W.
Thiel
, “
Orthogonalization corrections for semiempirical methods
,”
Theor. Chem. Acc.
103
,
495
506
(
2000
).
47.
A.
Koslowski
,
M. E.
Beck
, and
W.
Thiel
, “
Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach
,”
J. Comput. Chem.
24
,
714
726
(
2003
).
48.
P. O.
Dral
,
X.
Wu
,
L.
Spörkel
,
A.
Koslowski
,
W.
Weber
,
R.
Steiger
,
M.
Scholten
, and
W.
Thiel
, “
Semiempirical quantum-chemical orthogonalization-corrected methods: Theory, implementation, and parameters
,”
J. Chem. Theory Comput.
12
,
1082
1096
(
2016
).
49.
P. O.
Dral
,
X.
Wu
, and
W.
Thiel
, “
Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections
,”
J. Chem. Theory Comput.
15
,
1743
1760
(
2019
).
50.
W.
Thiel
, MNDO99 v7.0 with Upgrades,
Max-Planck-Institut für Kohlenforschung
,
2017
.
51.
M. J. S.
Dewar
,
J. A.
Hashmall
, and
C. G.
Venier
, “
Ground states of conjugated molecules. IX. Hydrocarbon radicals and radical ions
,”
J. Am. Chem. Soc.
90
,
1953
1957
(
1968
).
52.
M. R.
Silva-Junior
and
W.
Thiel
, “
Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2
,”
J. Chem. Theory Comput.
6
,
1546
1564
(
2010
).
53.
Y.
Lu
,
Z.
Lan
, and
W.
Thiel
, “
Hydrogen bonding regulates the monomeric nonradiative decay of adenine in DNA strands
,”
Angew. Chem., Int. Ed.
50
,
6864
6867
(
2011
).
54.
A.
Kazaryan
,
Z.
Lan
,
L. V.
Schäfer
,
W.
Thiel
, and
M.
Filatov
, “
Surface hopping excited-state dynamics study of the photoisomerization of a light-driven fluorene molecular rotary motor
,”
J. Chem. Theory Comput.
7
,
2189
2199
(
2011
).
55.
G.
Cui
and
W.
Thiel
, “
Photoinduced ultrafast Wolff rearrangement: A non-adiabatic dynamics perspective
,”
Angew. Chem., Int. Ed.
52
,
433
436
(
2013
).
56.
L.
Spörkel
,
J.
Jankowska
, and
W.
Thiel
, “
Photoswitching of salicylidene methylamine: A theoretical photodynamics study
,”
J. Phys. Chem. B
119
,
2702
2710
(
2015
).
57.
Y.-J.
Gao
,
X.-P.
Chang
,
X.-Y.
Liu
,
Q.-S.
Li
,
G.
Cui
, and
W.
Thiel
, “
Excited-state decay paths in tetraphenylethene 8 derivatives
,”
J. Phys. Chem. A
121
,
2572
2579
(
2017
).
58.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
, “
MP2 energy evaluation by direct methods
,”
Chem. Phys. Lett.
153
,
503
506
(
1988
).
59.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
60.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
61.
S.
Grimme
, “
Accurate description of van der Waals complexes by density functional theory including empirical corrections
,”
J. Comput. Chem.
25
,
1463
1473
(
2004
).
62.
TURBOMOLE v7.1,
TURBOMOLE GmbH
,
2016
.
63.
C.
Angeli
,
S.
Borini
,
M.
Cestari
, and
R.
Cimiraglia
, “
A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach
,”
J. Chem. Phys.
121
,
4043
4049
(
2004
).
64.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
65.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
66.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
109
(
2009
).
67.
G. L.
Stoychev
,
A. A.
Auer
, and
F.
Neese
, “
Automatic generation of auxiliary basis sets
,”
J. Chem. Theory Comput.
13
,
554
562
(
2017
).
68.
BAGEL, brilliantly advanced general electronic-structure library, http://www.nubakery.org under the GNU General Public License,
2018
.
69.
T.
Shiozaki
, “
BAGEL: Brilliantly advanced general electronic-structure library
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
70.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
71.
X.-H.
Zhou
,
F.-S.
Zhang
,
P.
Yuan
,
F.
Sun
,
S.-Z.
Pu
,
F.-Q.
Zhao
, and
C.-H.
Tung
, “
Photoelectrochromic dithienylperfluorocyclopentene derivatives
,”
Chem. Lett.
33
,
1006
1007
(
2004
).
72.
T.
Saika
,
M.
Irie
, and
T.
Shimidzu
, “
Thiophene oligomers with a photoswitch
,”
J. Chem. Soc., Chem. Commun.
1994
,
2123
2124
.
73.
K.
Higashiguchi
,
K.
Matsuda
,
Y.
Asano
,
A.
Murakami
,
S.
Nakamura
, and
M.
Irie
, “
Photochromism of dithienylethenes containing fluorinated thiophene rings
,”
Eur. J. Org. Chem.
2005
,
91
97
.
74.
T.
Sumi
,
Y.
Takagi
,
A.
Yagi
,
M.
Morimoto
, and
M.
Irie
, “
Photoirradiation wavelength dependence of cycloreversion quantum yields of diarylethenes
,”
Chem. Commun.
50
,
3928
(
2014
).
75.
S.
Shim
,
T.
Joo
,
S. C.
Bae
,
K. S.
Kim
, and
E.
Kim
, “
Ring opening dynamics of a photochromic diarylethene derivative in solution
,”
J. Phys. Chem. A
107
,
8106
8110
(
2003
).
76.
E.
Pontecorvo
,
C.
Ferrante
,
C. G.
Elles
, and
T.
Scopigno
, “
Structural rearrangement accompanying the ultrafast electrocyclization reaction of a photochromic molecular switch
,”
J. Phys. Chem. B
118
,
6915
6921
(
2014
).
77.
A.
de Meijere
,
L.
Zhao
,
V. N.
Belov
,
M.
Bossi
,
M.
Noltemeyer
, and
S. W.
Hell
, “
1,3-bicyclo[1.1.1]pentanediyl: The shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene fluorophore
,”
Chem. - Eur. J.
13
,
2503
2516
(
2007
).
78.
H.
Sotome
,
T.
Nagasaka
,
K.
Une
,
S.
Morikawa
,
T.
Katayama
,
S.
Kobatake
,
M.
Irie
, and
H.
Miyasaka
, “
Cycloreversion reaction of a diarylethene derivative at higher excited states attained by two-color, two-photon femtosecond pulsed excitation
,”
J. Am. Chem. Soc.
139
,
17159
17167
(
2017
).
79.
H.
Sotome
,
T.
Nagasaka
,
K.
Une
,
C.
Okui
,
Y.
Ishibashi
,
K.
Kamada
,
S.
Kobatake
,
M.
Irie
, and
H.
Miyasaka
, “
Efficient cycloreversion reaction of a diarylethene derivative in higher excited states attained by off-resonant simultaneous two-photon absorption
,”
J. Phys. Chem. Lett.
8
,
3272
3276
(
2017
).
80.
A.
Fihey
,
A.
Perrier
, and
F.
Maurel
, “
Tuning the optical properties of dithienylethenes: Theoretical insights
,”
J. Photochem. Photobiol., A
247
,
30
41
(
2012
).
81.
O.
Weingart
,
Z.
Lan
,
A.
Koslowski
, and
W.
Thiel
, “
Chiral pathways and periodic decay in cis-azobenzene photodynamics
,”
J. Phys. Chem. Lett.
2
,
1506
1509
(
2011
).
82.
M.
Barbatti
,
Z.
Lan
,
R.
Crespo-Otero
,
J. J.
Szymczak
,
H.
Lischka
, and
W.
Thiel
, “
Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine
,”
J. Chem. Phys.
137
,
22A503
(
2012
).
83.
S.
Nakamura
,
K.
Uchida
, and
M.
Hatakeyama
, “
Potential energy surfaces and quantum yields for photochromic diarylethene reactions
,”
Molecules
18
,
5091
5103
(
2013
).
84.
M.
Garavelli
,
C. S.
Page
,
P.
Celani
,
M.
Olivucci
,
W. E.
Schmid
,
S. A.
Trushin
, and
W.
Fuss
, “
Reaction path of a sub-200 fs photochemical electrocyclic reaction
,”
J. Phys. Chem. A
105
,
4458
4469
(
2001
).
85.
I.
Polyak
,
L.
Hutton
,
R.
Crespo-Otero
,
M.
Barbatti
, and
P. J.
Knowles
, “
Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping
,”
J. Chem. Theory Comput.
15
,
3929
3940
(
2019
).
86.
J. M.
Cox
,
I. M.
Walton
,
D. G.
Patel
,
M.
Xu
,
Y.-S.
Chen
, and
J. B.
Benedict
, “
The temperature dependent photoswitching of a classic diarylethene monitored by in situ x-ray diffraction
,”
J. Phys. Chem. A
119
,
884
888
(
2015
).
87.
D.
Fazzi
,
M.
Barbatti
, and
W.
Thiel
, “
Modeling ultrafast exciton deactivation in oligothiophenes via nonadiabatic dynamics
,”
Phys. Chem. Chem. Phys.
17
,
7787
7799
(
2015
).
88.
G. M.
Tsivgoulis
and
J.-M.
Lehn
, “
Photoswitched and functionalized oligothiophenes: Synthesis and photochemical and electrochemical properties
,”
Chem. - Eur. J.
2
,
1399
1406
(
1996
).
89.
J.
Gao
,
J.
Feng
, and
D.
Du
, “
Shining light on C–S bonds: Recent advances in C–C bond formation reactions via C–S bond cleavage under photoredox catalysis
,”
Chem. - Asian J.
15
,
3637
3659
(
2020
).
90.
K.
Tani
,
Y.
Ishibashi
,
H.
Miyasaka
,
S.
Kobatake
, and
M.
Irie
, “
Dynamics of cyclization, cycloreversion, and multiphoton-gated reaction of a photochromic diarylethene derivative in crystalline phase
,”
J. Phys. Chem. C
112
,
11150
11157
(
2008
).
91.
Y.
Ishibashi
,
M.
Mukaida
,
M.
Falkenström
,
H.
Miyasaka
,
S.
Kobatake
, and
M.
Irie
, “
One- and multi-photon cycloreversion reaction dynamics of diarylethene derivative with asymmetrical structure, as revealed by ultrafast laser spectroscopy
,”
Phys. Chem. Chem. Phys.
11
,
2640
(
2009
).
92.
T.
Nagasaka
,
T.
Kunishi
,
H.
Sotome
,
M.
Koga
,
M.
Morimoto
,
M.
Irie
, and
H.
Miyasaka
, “
Multiphoton-gated cycloreversion reaction of a fluorescent diarylethene derivative as revealed by transient absorption spectroscopy
,”
Phys. Chem. Chem. Phys.
20
,
19776
19783
(
2018
).

Supplementary Material

You do not currently have access to this content.