The microwave spectrum of 2,5-dimethylpyrrole was recorded using a molecular jet Fourier transform microwave spectrometer operating in the frequency range from 2 to 26.5 GHz. Only one stable conformer was observed as expected and confirmed by quantum chemical calculations carried out to complement the experimental analysis. The two equivalent methyl groups cause each rotational transition to split into four torsional species, which is combined with the quadrupole hyperfine splittings in the same order of magnitude arising from the 14N nucleus. This results in a complicated spectrum feature. The spectral assignment was done separately for each torsional species. Two global fits were carried out using the XIAM code and the BELGI-C2v-2Tops-hyperfine code, a modified version of the BELGI-C2v-2Tops code, giving satisfactory root-mean-square deviations. The potential barriers to internal rotation of the two methyl groups were determined to be V3 = 317.208(16) cm−1. The molecular parameters were obtained with high accuracy, providing all necessary ground state information for further investigations in higher frequency ranges and on excited torsional-vibrational states.

1.
D. G.
Lister
,
J. N.
MacDonald
, and
N. L.
Owen
,
Internal Rotation and Inversion: An Introduction to Large Amplitude Motions in Molecules
(
Academic Press
,
New York
,
1978
).
2.
H. V. L.
Nguyen
and
I.
Kleiner
, “
Understanding (coupled) large amplitude motions: The interplay of microwave spectroscopy, spectral modeling, and quantum chemistry
,”
Phys. Sci. Rev.
(published online) (
2021
).
3.
A. C.
Legon
,
Chem. Rev.
80
,
231
(
1980
).
4.
H. V. L.
Nguyen
,
I.
Gulaczyk
,
M.
Kręglewski
, and
I.
Kleiner
,
Coord. Chem. Rev.
436
,
213797
(
2021
).
5.
E. C.
Thomas
and
V. W.
Laurie
,
J. Chem. Phys.
50
,
3512
(
1969
).
6.
J. E.
Wollrab
and
V. W.
Laurie
,
J. Chem. Phys.
54
,
532
(
1971
).
7.
K. P. R.
Nair
,
H. D.
Rudolph
, and
H.
Dreizler
,
J. Mol. Spectrosc.
48
,
571
(
1973
).
8.
H. S.
Gutowsky
and
T. C.
Germann
,
J. Mol. Spectrosc.
147
,
91
(
1991
).
9.
G.
Bestmann
,
W.
Lalowski
, and
H.
Dreizler
,
Z. Naturforsch. A
40
,
271
(
1985
).
10.
W.
Caminati
and
S. D.
Bernardo
,
Chem. Phys. Lett.
171
,
39
(
1990
).
11.
C.
Thomsen
and
H.
Dreizler
,
Z. Naturforsch. A
48
,
1093
(
1993
).
12.
M.
Schnell
,
J.-U.
Grabow
,
H.
Hartwig
,
N.
Heineking
,
M.
Meyer
,
W.
Stahl
, and
W.
Caminati
,
J. Mol. Spectrosc.
229
,
1
(
2005
).
13.
M.
Meyer
,
W.
Stahl
, and
H.
Dreizler
,
J. Mol. Spectrosc.
151
,
243
(
1992
).
14.
L. B.
Favero
,
L.
Evangelisti
,
G.
Feng
,
L.
Spada
, and
W.
Caminati
,
Chem. Phys. Lett.
517
,
139
(
2011
).
15.
P.
Groner
,
S.
Albert
,
E.
Herbst
,
F. C.
De Lucia
,
F. J.
Lovas
,
B. J.
Drouin
, and
J. C.
Pearson
,
Astrophys. J.
142
,
145
(
2002
).
16.
V. V.
Ilyushin
and
J. T.
Hougen
,
J. Mol. Spectrosc.
289
,
41
(
2013
).
17.
W.
Neustock
,
A.
Guarnieri
,
J.
Demaison
, and
G.
Wlodarczak
,
Z. Naturforsch. A
45
,
702
(
1990
).
18.
H. V. L.
Nguyen
and
W.
Stahl
,
ChemPhysChem
12
,
1900
(
2011
).
19.
A.
Jabri
,
V.
Van
,
H. V. L.
Nguyen
,
H.
Mouhib
,
F.
Kwabia-Tchana
,
L.
Manceron
,
W.
Stahl
, and
I.
Kleiner
,
Astron. Astrophys.
589
,
A127
(
2016
).
20.
V.
Van
,
W.
Stahl
, and
H. V. L.
Nguyen
,
Phys. Chem. Chem. Phys.
17
,
32111
(
2015
).
21.
V.
Van
,
J.
Bruckhuisen
,
W.
Stahl
,
V.
Ilyushin
, and
H. V. L.
Nguyen
,
J. Mol. Spectrosc.
343
,
121
(
2018
).
22.
S.
Khemissi
and
H. V. L.
Nguyen
,
ChemPhysChem
21
,
1682
1687
(
2020
).
23.
W.
Jäger
and
H.
Mäder
,
Z. Naturforsch. A
42
,
1405
(
1987
).
24.
W.
Jäger
and
H.
Mäder
,
J. Mol. Struct.
190
,
295
(
1988
).
25.
K. P. R.
Nair
,
S.
Herbers
,
W. C.
Bailey
,
D. A.
Obenchain
,
A.
Lesarri
,
J.-U.
Grabow
, and
H. V. L.
Nguyen
,
Spectrochim. Acta, Part A
247
,
119120
(
2021
).
26.
T.
Nguyen
,
V.
Van
,
C.
Gutlé
,
W.
Stahl
,
M.
Schwell
,
I.
Kleiner
, and
H. V. L.
Nguyen
,
J. Chem. Phys.
152
,
134306
(
2020
).
27.
L.
Ferres
,
W.
Stahl
, and
H. V. L.
Nguyen
,
J. Chem. Phys.
151
,
104310
(
2019
).
28.
R.
Kannengießer
,
M. J.
Lach
,
W.
Stahl
, and
H. V. L.
Nguyen
,
ChemPhysChem
16
,
1906
(
2015
).
29.
A.
Roucou
,
M.
Goubet
,
I.
Kleiner
,
S.
Bteich
, and
A.
Cuisset
,
ChemPhysChem
21
,
2523
(
2020
).
30.
H.
Hartwig
and
H.
Dreizler
,
Z. Naturforsch. A
51
,
923
(
1996
).
31.
V.
Van
,
T.
Nguyen
,
W.
Stahl
,
H. V. L.
Nguyen
, and
I.
Kleiner
,
J. Mol. Struct.
1207
,
127787
(
2020
).
32.
L.
Ferres
,
W.
Stahl
,
I.
Kleiner
, and
H. V. L.
Nguyen
,
J. Mol. Spectrosc.
343
,
44
(
2018
).
33.
H. V. L.
Nguyen
and
W.
Stahl
,
J. Mol. Spectrosc.
264
,
120
(
2010
).
34.
L.
Ferres
,
W.
Stahl
, and
H. V. L.
Nguyen
,
J. Chem. Phys.
148
,
124304
(
2018
).
35.
S.
Herbers
,
S. M.
Fritz
,
P.
Mishra
,
H. V. L.
Nguyen
, and
T. S.
Zwier
,
J. Chem. Phys.
152
,
074301
(
2020
).
36.
K. P. R.
Nair
,
S.
Herbers
,
H. V. L.
Nguyen
, and
J.-U.
Grabow
,
Spectrochim. Acta, Part A
242
,
118709
(
2020
).
37.
S.
Herbers
and
H. V. L.
Nguyen
,
J. Mol. Spectrosc.
370
,
111289
(
2020
).
38.
J. T.
Hougen
,
I.
Kleiner
, and
M.
Godefroid
,
J. Mol. Spectrosc.
163
,
559
(
1994
).
39.
R.
Kannengießer
,
W.
Stahl
,
H. V. L.
Nguyen
, and
I.
Kleiner
,
J. Phys. Chem. A
120
,
3992
(
2016
).
40.
K.
Eibl
,
R.
Kannengießer
,
W.
Stahl
,
H. V. L.
Nguyen
, and
I.
Kleiner
,
Mol. Phys.
114
,
3483
(
2016
).
41.
K.
Eibl
,
W.
Stahl
,
I.
Kleiner
, and
H. V. L.
Nguyen
,
J. Chem. Phys.
149
,
144306
(
2018
).
42.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
44.
R.
Kannengießer
,
W.
Stahl
,
H. V. L.
Nguyen
, and
W. C.
Bailey
,
J. Mol. Spectrosc.
317
,
50
(
2015
).
45.
J. B.
Graneek
,
W. C.
Bailey
, and
M.
Schnell
,
Phys. Chem. Chem. Phys.
20
,
22210
(
2018
).
46.
T.
Nguyen
,
C.
Dindic
,
W.
Stahl
,
H. V. L.
Nguyen
, and
I.
Kleiner
,
Mol. Phys.
118
,
1668572
(
2020
).
47.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa, ON, Canada
,
2006
).
48.
G. S.
Ezra
,
Symmetry Properties of Molecules
, Lecture Notes in Chemistry Vol. 28 (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1982
).
49.
N.
Ohashi
,
J. T.
Hougen
,
R. D.
Suenram
,
F. J.
Lovas
,
Y.
Kawashima
,
M.
Fujitake
, and
J.
Pyka
,
J. Mol. Spectrosc.
227
,
28
(
2004
).
50.
M.
Tudorie
,
I.
Kleiner
,
J. T.
Hougen
,
S.
Melandri
,
L. W.
Sutikdja
, and
W.
Stahl
,
J. Mol. Spectrosc.
269
,
211
(
2011
).
51.
H. B. G.
Casimir
,
On the Interaction Between Atomic Nuclei and Electronics
(
Teyler’s Tweede Genootschap and E. F. Bohn
,
Harlem
,
1936
).
52.
J. U.
Grabow
,
W.
Stahl
, and
H.
Dreizler
,
Rev. Sci. Instrum.
67
,
4072
(
1996
).
53.
N. M.
Pozdeev
,
L. N.
Gunderova
, and
A. A.
Shapkin
,
Opt. Spectrosc.
28
,
254
(
1970
).
54.
I. A.
Finneran
,
S. T.
Shipman
, and
S. L.
Widicus Weaver
,
J. Mol. Spectrosc.
280
,
27
(
2012
).
55.
T.
Nguyen
,
W.
Stahl
,
H. V. L.
Nguyen
, and
I.
Kleiner
,
J. Mol. Spectrosc.
372
,
111351
(
2020
).

Supplementary Material

You do not currently have access to this content.