Pseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data. AQs are important to quorum sensing (QS), virulence, and other actions of P. aeruginosa. Three-dimensional distributions of three different AQs (PQS, HQNO, and HHQ) were observed to have a significant depth, suggesting 3D anisotropic shapes—sheet-like rectangular solids for HQNO and extended cylinders for PQS. Similar to observations from 2D imaging studies, spectral features characteristic of AQs (HQNO or PQS) and the amide I vibration from peptide-containing species were found to correlate with the PQS cylinders typically located at the tips of the HQNO rectangular solids. In the QS-deficient mutant lasIrhlI, a small globular component was observed, whose highly localized nature and similarity in size to a P. aeruginosa cell suggest that the feature arises from HHQ localized in the vicinity of the cell from which it was secreted. The difference in the shapes and sizes of the aggregates of the three AQs in wild-type and mutant P. aeruginosa is likely related to the difference in the cellular response to growth conditions, environmental stress, metabolic levels, or other structural and biochemical variations inside biofilms. This study provides a new route to characterizing the 3D structure of biofilms and shows the potential of confocal Raman imaging to elucidate the nature of heterogeneous biofilms in all three spatial dimensions. These capabilities should be applicable as a tool in studies of infectious diseases.

1.
T.
Rasamiravaka
,
Q.
Labtani
,
P.
Duez
, and
M.
El Jaziri
, “
The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms
,”
Biomed. Res. Int.
2015
,
759348
.
2.
L.
Ma
,
M.
Conover
,
H.
Lu
,
M. R.
Parsek
,
K.
Bayles
, and
D. J.
Wozniak
, “
Assembly and development of the Pseudomonas aeruginosa biofilm matrix
,”
PLoS Pathog.
5
,
e1000354
(
2009
).
3.
J. W.
Costerton
,
P. S.
Stewart
, and
E. P.
Greenberg
, “
Bacterial biofilms: A common cause of persistent infections
,”
Science
284
,
1318
1322
(
1999
).
4.
L.
Hall-Stoodley
,
J. W.
Costerton
, and
P.
Stoodley
, “
Bacterial biofilms: From the natural environment to infectious diseases
,”
Nat. Rev. Microbiol.
2
,
95
108
(
2004
).
5.
D. G.
Allison
and
M. J.
Matthews
, “
Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa
,”
J. Appl. Bacteriol.
73
,
484
488
(
1992
).
6.
M.
Starkey
,
J. H.
Hickman
,
L.
Ma
,
N.
Zhang
,
S.
De Long
,
A.
Hinz
,
S.
Palacios
,
C.
Manoil
,
M. J.
Kirisits
,
T. D.
Starner
,
D. J.
Wozniak
,
C. S.
Harwood
, and
M. R.
Parsek
, “
Pseudomonas aeruginosa small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung
,”
J. Bacteriol.
191
,
3492
3503
(
2009
).
7.
R.
Daniels
,
J.
Vanderleyden
, and
J.
Michiels
, “
Quorum sensing and swarming migration in bacteria
,”
FEMS Microbiol. Rev.
28
,
261
289
(
2004
).
8.
M. B.
Miller
and
B. L.
Bassler
, “
Quorum sensing in bacteria
,”
Annu. Rev. Microbiol.
55
,
165
199
(
2001
).
9.
L.
Passador
,
J. M.
Cook
,
M. J.
Gambello
,
L.
Rust
,
B. H.
Iglewski
, “
Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication
,”
Science
260
,
1127
1130
(
1993
).
10.
D. G.
Davies
,
M. R.
Parsek
,
J. P.
Pearson
,
B. H.
Iglewski
,
J. W.
Costerton
, and
E. P.
Greenberg
, “
The involvement of cell-to-cell signals in the development of a bacterial biofilm
,”
Science
280
,
295
298
(
1998
).
11.
Y.-H.
Li
and
X.
Tian
, “
Quorum sensing and bacterial social interactions in biofilms
,”
Sensors
12
,
2519
2538
(
2012
).
12.
S. A.
West
,
K.
Winzer
,
A.
Gardner
, and
S. P.
Diggle
, “
Quorum sensing and the confusion about diffusion
,”
Trends Microbiol.
20
,
586
594
(
2012
).
13.
J.
Lee
,
J.
Wu
,
Y.
Deng
,
J.
Wang
,
C.
Wang
,
J.
Wang
,
C.
Chang
,
Y.
Dong
,
P.
Williams
, and
L.-H.
Zhang
, “
A cell-cell communication signal integrates quorum sensing and stress response
,”
Nat. Chem. Biol.
9
,
339
343
(
2013
).
14.
J.
Lee
and
L.
Zhang
, “
The hierarchy quorum sensing network in Pseudomonas aeruginosa
,”
Protein Cell
6
,
26
41
(
2015
).
15.
D.-G.
Ha
,
J. H.
Merritt
,
T. H.
Hampton
,
J. T.
Hodgkinson
,
M.
Janecek
,
D. R.
Spring
,
M.
Welch
, and
G. A.
O’Toole
, “
2-heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa
,”
J. Bacteriol.
193
,
6770
6780
(
2011
).
16.
F. J.
Reen
,
M. J.
Mooij
,
L. J.
Holcombe
,
C. M.
McSweeney
,
G. P.
McGlacken
,
J. P.
Morrissey
, and
F.
O’Gara
, “
The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour
,”
FEMS Microbiol. Ecol.
77
,
413
428
(
2011
).
17.
G.
Orazi
and
G. A.
O’Toole
, “
Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection
,”
mBio
8
,
e00873
17
(
2017
).
18.
N. F.
Baig
,
S. J. B.
Dunham
,
N.
Morales-Soto
,
J. D.
Shrout
,
J. V.
Sweedler
, and
P. W.
Bohn
, “
Multimodal chemical imaging of molecular messengers in emerging Pseudomonas aeruginosa bacterial communities
,”
Analyst
140
,
6544
6552
(
2015
).
19.
T.
Cao
,
J. V.
Sweedler
,
P. W.
Bohn
, and
J. D.
Shrout
, “
Spatiotemporal distribution of Pseudomonas aeruginosa alkyl quinolones under metabolic and competitive stress
,”
mSphere
5
,
e00426
20
(
2020
).
20.
N.
Morales-Soto
,
S. J. B.
Dunham
,
N. F.
Baig
,
J. F.
Ellis
,
C. S.
Madukoma
,
P. W.
Bohn
,
J. V.
Sweedler
, and
J. D.
Shrout
, “
Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms
,”
J. Biol. Chem.
293
,
9544
9552
(
2018
).
21.
N.
Morales-Soto
,
T.
Cao
,
K.
Kramer
,
N. F.
Baig
,
P. W.
Bohn
, and
J. D.
Shrout
, “
Surface growing communities of Pseudomonas aeruginosa exhibit distinct alkyl quinolone signatures
,”
Microbiol. Insights
11
,
1
4
(
2018
).
22.
J. R.
Lawrence
,
D. R.
Korber
,
B. D.
Hoyle
,
J. W.
Costerton
, and
D. E.
Caldwell
, “
Optical sectioning of microbial biofilms
,”
J. Bacteriol.
173
,
6558
6567
(
1991
).
23.
C.
Hannig
,
M.
Follo
,
E.
Hellwig
, and
A.
Al-Ahmad
, “
Visualization of adherent micro-organisms using different techniques
,”
J. Med. Microbiol.
59
,
1
7
(
2010
).
24.
A.
Al-Ahmad
,
M.
Follo
,
A.-C.
Selzer
,
E.
Hellwig
,
M.
Hannig
, and
C.
Hannig
, “
Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization
,”
J. Med. Microbiol.
58
,
1359
1366
(
2009
).
25.
R.
Masyuko
,
E. J.
Lanni
,
J. V.
Sweedler
, and
P. W.
Bohn
, “
Correlated imaging—A grand challenge in chemical analysis
,”
Analyst
138
,
1924
1939
(
2013
).
26.
D. I.
Ellis
and
R.
Goodacre
, “
Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy
,”
Analyst
131
,
875
885
(
2006
).
27.
D. R.
Ahlf
,
R. N.
Masyuko
,
A. B.
Hummon
, and
P. W.
Bohn
, “
Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections
,”
Analyst
139
,
4578
4585
(
2014
).
28.
C. L. M.
Morais
,
P. L.
Martin-Hirsch
, and
F. L.
Martin
, “
A three-dimensional principal component analysis approach for exploratory analysis of hyperspectral data: Identification of ovarian cancer samples based on Raman microspectroscopy imaging of blood plasma
,”
Analyst
144
,
2312
2319
(
2019
).
29.
D.
Zhang
,
P.
Wang
,
M. N.
Slipchenko
,
D.
Ben-Amotz
,
A. M.
Weiner
, and
J.-X.
Cheng
, “
Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis
,”
Anal. Chem.
85
,
98
106
(
2013
).
30.
J. P.
Kitt
,
D. A.
Bryce
,
S. D.
Minteer
, and
J. M.
Harris
, “
Confocal Raman microscopy investigation of self-assembly of hybrid phospholipid bilayers within individual porous silica chromatographic particles
,”
Anal. Chem.
91
,
7790
7797
(
2019
).
31.
C.
Korzeniewski
,
J. P.
Kitt
,
S.
Bukola
,
S. E.
Creager
,
S. D.
Minteer
, and
J. M.
Harris
, “
Single layer graphene for estimation of axial spatial resolution in confocal Raman microscopy depth profiling
,”
Anal. Chem.
91
,
1049
1055
(
2019
).
32.
X.-Y.
Liu
,
S.
Guo
,
A.
Ramoji
,
T.
Bocklitz
,
P.
Rösch
,
J.
Popp
, and
H.-Q.
Yu
, “
Spatiotemporal organization of biofilm matrix revealed by confocal Raman mapping integrated with non-negative matrix factorization analysis
,”
Anal. Chem.
92
,
707
715
(
2020
).
33.
A. J.
Bullock
,
M.
Garcia
,
J.
Shepherd
,
I.
Rehman
, and
M.
Sheila
, “
Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy
,”
Appl. Spectrosc. Rev.
55
,
158
171
(
2019
).
34.
S.
Bandyopadhyay-Ghosh
,
S. B.
Ghosh
,
A.
Rodriguez
, and
M. M.
Sain
, “
Biosynthesis, microstructural characterisations and investigation of in-vitro mutagenic and eco-toxicological response of a novel microbial exopolysaccharide based biopolymer
,”
J. Polym. Environ.
26
,
365
374
(
2017
).
35.
C. J.
De Grauw
,
N. M.
Sijtsema
,
C.
Otto
, and
J.
Greve
, “
Axial resolution of confocal Raman microscopes: Gaussian beam theory and practice
,”
J. Microsc.
188
,
273
279
(
1997
).
36.
N. J.
Everall
, “
Confocal Raman microscopy: Common errors and artefacts
,”
Analyst
135
,
2512
2522
(
2010
).
37.
N.
Baig
,
S.
Polisetti
,
N.
Morales-Soto
,
S. J. B.
Dunham
,
J. V.
Sweedler
,
J. D.
Shrout
, and
P. W.
Bohn
, “
Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa
,”
Proc. SPIE
9930
,
993004
(
2016
).
38.
M. P.
Fletcher
,
S. P.
Diggle
,
M.
Cámara
, and
P.
Williams
, “
Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules
,”
Nat. Protoc.
2
,
1254
1262
(
2007
).

Supplementary Material

You do not currently have access to this content.