Transition Metal Complexes (TMCs) are known for the rich variety of their excited states showing different nature and degrees of locality. Describing the energies of these excited states with the same degree of accuracy is still problematic when using time-dependent density functional theory in conjunction with the most current density functional approximations. In particular, the presence of unphysically low lying excited states possessing a relevant Charge Transfer (CT) character may significantly affect the spectra computed at such a level of theory and, more relevantly, the interpretation of their photophysical behavior. In this work, we propose an improved version of the MAC index, recently proposed by the authors and collaborators, as a simple and computationally inexpensive diagnostic tool that can be used for the detection and correction of the unphysically predicted low lying excited states. The analysis, performed on five prototype TMCs, shows that spurious and ghost states can appear in a wide spectral range and that it is difficult to detect them only on the basis of their CT extent. Indeed, both delocalization of the excited state and CT extent are criteria that must be combined, as in the MAC index, to detect unphysical states.

1.
C. J.
Cramer
and
D. G.
Truhlar
, “
Density functional theory for transition metals and transition metal Chemistry
,”
Phys. Chem. Chem. Phys.
11
,
10757
10816
(
2009
).
2.
C.
Daniel
, “
Photochemistry and photophysics of transition metal complexes: Quantum Chemistry
,”
Coord. Chem. Rev.
282-283
,
19
32
(
2015
).
3.
C.
Daniel
, “
Absorption spectroscopy, emissive properties, and ultrafast intersystem crossing processes in transition metal complexes: TD-DFT and spin-orbit coupling
,”
Top. Curr. Chem.
368
,
377
413
(
2016
).
4.
A.
Francés-Monerris
,
P. C.
Gros
,
X.
Assfeld
,
A.
Monari
, and
M.
Pastore
, “
Toward luminescent iron complexes: Unravelling the photophysics by computing potential energy surfaces
,”
ChemPhotoChem
3
(
9
),
666
683
(
2019
).
5.
A. A.
Cordones
,
J. H.
Lee
,
K.
Hong
,
H.
Cho
,
K.
Garg
,
M.
Boggio-Pasqua
,
J. J.
Rack
,
N.
Huse
,
R. W.
Schoenlein
, and
T. K.
Kim
, “
Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex
,”
Nat. Commun.
9
,
1989
(
2018
).
6.
F.
Talotta
,
J.-L.
Heully
,
F.
Alary
,
I. M.
Dixon
,
L.
González
, and
M.
Boggio-Pasqua
, “
Linkage photoisomerization mechanism in a photochromic ruthenium nitrosyl complex: New insights from an MS-CASPT2 study
,”
J. Chem. Theory Comput.
13
,
6120
6130
(
2017
).
7.
A.
Vlček
and
S.
Záliš
, “
Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques
,”
Coord. Chem. Rev.
251
,
258
287
(
2007
).
8.
U.
Raucci
,
I.
Ciofini
,
C.
Adamo
, and
N.
Rega
, “
Unveiling the reactivity of a synthetic mimic of the oxygen evolving complex
,”
J. Chem. Phys. Lett.
7
,
5015
5021
(
2016
).
9.
S.
Mai
,
F.
Plasser
,
J.
Dorn
,
M.
Fumanal
,
C.
Daniel
, and
L.
González
, “
Quantitative wave function analysis for excited states of transition metal complexes
,”
Coord. Chem. Rev.
361
,
74
97
(
2018
).
10.
D. M.
Roundhill
,
Photochemistry and Photophysics of Metal Complexes
(
Springer
,
Boston, MA
,
1994
).
11.
A.
Juris
,
V.
Balzani
,
F.
Barigelletti
,
S.
Campagna
,
P.
Belser
, and
A.
von Zelewsky
, “
Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence
,”
Coord. Chem. Rev.
84
,
85
277
(
1988
).
12.
S.
Campagna
,
F.
Puntoriero
,
F.
Nastasi
,
G.
Bergamini
, and
V.
Balzani
, “
Photochemistry and photophysics of coordination compounds: Ruthenium
,” in
Photochemistry and Photophysics of Coordination Compounds I
, edited by
V.
Balzani
and
S.
Campagna
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2007
), pp.
117
214
.
13.
M.
Grätzel
, “
Dye-Sensitized solar cells
,”
J. Photochem. Photobiol. C: Photochem. Rev.
4
(
2
),
145
153
(
2003
).
14.
A.
Hagfeldt
,
G.
Boschloo
,
L.
Sun
,
L.
Kloo
, and
H.
Pettersson
, “
Dye-Sensitized solar cells
,”
Chem. Rev.
110
(
11
),
6595
6663
(
2010
).
15.
J.
Su
,
T.
Zhu
,
T.
Pauporté
,
I.
Ciofini
, and
F.
Labat
, “
Improving the heterointerface in hybrid organic-inorganic perovskite solar cells by surface engineering: Insights from periodic hybrid density functional theory calculations
,”
J. Comput. Chem.
41
,
1740
1747
(
2020
).
16.
F.
Labat
,
T.
Le Bahers
,
I.
Ciofini
, and
C.
Adamo
, “
First-principles modeling of dye-sensitized solar cells: Challenges and perspectives
,”
Acc. Chem. Res.
45
,
1268
1277
(
2012
).
17.
F.
Labat
,
I.
Ciofini
,
H. P.
Hratchian
,
M. J.
Frisch
,
K.
Raghavachari
, and
C.
Adamo
, “
Insights into working principles of N3/TiO2 dye-sensitized solar cells from first principles modeling
,”
J. Phys. Chem. C
115
,
4297
4306
(
2011
).
18.
J. D.
Knoll
and
C.
Turro
, “
Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy
,”
Coord. Chem. Rev.
282-283
,
110
126
(
2015
).
19.
E.
Ruggiero
,
S.
Alonso-de Castro
,
A.
Habtemariam
, and
L.
Salassa
, “
The photochemistry of transition metal complexes and its application in biology and medicine
,”
Struct. Bond.
165
,
69
107
(
2014
).
20.
F. E.
Poynton
,
S. A.
Bright
,
S.
Blasco
,
D. C.
Williams
,
J. M.
Kelly
, and
T.
Gunnlaugsson
, “
The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications
,”
Chem. Soc. Rev.
46
(
24
),
7706
7756
(
2017
).
21.
S.
Monro
,
K. L.
Colón
,
H.
Yin
,
J.
Roque
 III
,
P.
Konda
,
S.
Gujar
,
R. P.
Thummel
,
L.
Lilge
,
C. G.
Cameron
, and
S. A.
McFarland
, “
Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433
,”
Chem. Rev.
119
(
2
),
797
828
(
2019
).
22.
J.
Karges
,
F.
Heinemann
,
M.
Jakubaszek
,
F.
Maschietto
,
C.
Subecz
,
M.
Dotou
,
O.
Blacque
,
M.
Tharaud
,
B.
Goud
,
E.
Viñuelas Zahínos
,
B.
Spingler
,
I.
Ciofini
, and
G.
Gasser
, “
Rationally designed long-wavelength absorbing Ru(II) polypyridyl complexes as photosensitizers for photodynamic therapy
,”
J. Am. Chem. Soc.
142
,
6578
6587
(
2020
).
23.
J.
Karges
,
S.
Kuang
,
F.
Maschietto
,
O.
Blacque
,
I.
Ciofini
,
H.
Chao
, and
G.
Gasser
, “
Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy
,”
Nat. Commun.
11
,
3262
(
2020
).
24.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
25.
B. O.
Roos
,
R.
Lindh
,
P. Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
Multiconfigurational Quantum Chemistry
(
John Wiley & Sons
,
2016
).
26.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
27.
M.
Fumanal
and
C.
Daniel
, “
Description of excited states in [Re(Imidazole)(CO)3(Phen)]+ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach
,”
J. Comput. Chem.
37
(
27
),
2454
2466
(
2016
).
28.
F.
Furche
and
D.
Rappoport
, “
Density functional methods for excited states: Equilibrium structure and electronic spectra
,”
Theor. Comput. Chem.
16
,
93
128
(
2005
).
29.
C.
Adamo
and
D.
Jacquemin
, “
The calculations of excited-state properties with time-dependent density functional theory
,”
Chem. Soc. Rev.
42
,
845
856
(
2013
).
30.
A.
Dreuw
and
M.
Head-Gordon
, “
Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes
,”
J. Am. Chem. Soc.
126
(
12
),
4007
4016
(
2004
).
31.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
(
2003
).
32.
I.
Ciofini
,
H.
Chermette
, and
C.
Adamo
, “
A mean-field self-interaction correction in density functional theory: Implementation and validation for molecules
,”
Chem. Phys. Lett.
380
,
12
20
(
2003
).
33.
I.
Ciofini
,
C.
Adamo
, and
H.
Chermette
, “
Self-interaction error in density functional theory: A mean-field correction for molecules and large systems
,”
Chem. Phys.
309
,
67
76
(
2005
).
34.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
, “
Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold
,”
J. Chem. Phys.
108
,
4439
4449
(
1998
).
35.
S.
Grimme
and
M.
Parac
, “
Substantial errors from time-dependent density functional theory for the calculation of excited states of large π systems
,”
ChemPhysChem
4
,
292
295
(
2003
).
36.
D. J.
Tozer
, “
Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory
,”
J. Chem. Phys.
119
,
12697
12699
(
2003
).
37.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
(
19
),
2315
2372
(
2017
).
38.
A.
Ottochian
,
C.
Morgillo
,
I.
Ciofini
,
M. J.
Frisch
,
G.
Scalmani
, and
C.
Adamo
, “
Double hybrids and time-dependent density functional theory: An implementation and benchmark on charge transfer excited states
,”
J. Comput. Chem.
41
,
1242
1251
(
2020
).
39.
M.
Casanova-Páez
and
L.
Goerigk
, “
Assessing the Tamm–Dancoff approximation, singlet–singlet, and singlet–triplet excitations with the latest long-range corrected double-hybrid density functionals
,”
J. Chem. Phys.
153
(
6
),
064106
(
2020
).
40.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
109
(
2010
).
41.
A. K.
Manna
,
M. H.
Lee
,
K. L.
McMahon
, and
B. D.
Dunietz
, “
Calculating high energy charge transfer states using optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
11
,
1110
1117
(
2015
).
42.
Z.-L.
Cai
,
K.
Sendt
, and
J. R.
Reimers
, “
Failure of density-functional theory and time-dependent density-functional theory for large extended π systems
,”
J. Chem. Phys.
117
,
5543
5549
(
2002
).
43.
M.
Head-Gordon
,
A. M.
Grana
,
D.
Maurice
, and
C. A.
White
, “
Analysis of electronic transitions as the difference of electron attachment and detachment densities
,”
J. Phys. Chem.
99
(
39
),
14261
14270
(
1995
).
44.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
45.
T.
Le Bahers
,
C.
Adamo
, and
I.
Ciofini
, “
A qualitative index of spatial extent in charge-transfer excitations
,”
J. Chem. Theory Comput.
7
,
2498
2506
(
2011
).
46.
C. A.
Guido
,
P.
Cortona
,
B.
Mennucci
, and
C.
Adamo
,
J. Chem. Theory Comput.
9
,
3118
(
2013
).
47.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. I. Formalism
,”
J. Chem. Phys.
141
,
024106
(
2014
).
48.
T.
Etienne
,
X.
Assfeld
, and
A.
Monari
, “
Toward a quantitative assessment of electronic transitions’ charge-transfer character
,”
J. Chem. Theory Comput.
10
,
3896
3905
(
2014
).
49.
C.
Adamo
,
T.
Le Bahers
,
M.
Savarese
,
L.
Wilbraham
,
G.
García
,
R.
Fukuda
,
M.
Ehara
,
N.
Rega
, and
I.
Ciofini
,
Coord. Chem. Rev.
304-305
,
166
(
2015
).
50.
F.
Plasser
, “
TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations
,”
J. Chem. Phys.
152
,
084108
(
2020
).
51.
L.
Huet
,
A.
Perfetto
,
F.
Muniz-Miranda
,
M.
Campetella
,
C.
Adamo
, and
I.
Ciofini
, “
A general density-based index to analyze charge transfer phenomena: From models to butterfly molecules
,”
J. Chem. Theory Comput.
16
,
4543
4553
(
2020
).
52.
R. L.
Martin
, “
Natural transition orbitals
,”
J. Chem. Phys.
118
,
4775
4777
(
2003
).
53.
B. J.
Coe
,
A.
Avramopoulos
,
M. G.
Papadopoulos
,
K.
Pierloot
,
S.
Vancoillie
, and
H.
Reis
, “
Theoretical modelling of photoswitching of hyperpolarisabilities in ruthenium complexes
,”
Chem. Eur. J.
19
(
47
),
15955
15963
(
2013
).
54.
S.
De Sousa
,
L.
Ducasse
,
B.
Kauffmann
,
T.
Toupance
, and
C.
Olivier
, “
Functionalization of a ruthenium-diacetylide organometallic complex as a next-generation push-pull chromophore
,”
Chem. - Eur. J.
20
(
23
),
7017
7024
(
2014
).
55.
S.
De Sousa
,
S.
Lyu
,
L.
Ducasse
,
T.
Toupance
, and
C.
Olivier
, “
Tuning visible-light absorption properties of Ru–diacetylide complexes: Simple access to colorful efficient dyes for DSSCs
,”
J. Mater. Chem. A
3
(
35
),
18256
18264
(
2015
).
56.
M.
Olaru
,
E.
Rychagova
,
S.
Ketkov
,
Y.
Shynkarenko
,
S.
Yakunin
,
M. V.
Kovalenko
,
A.
Yablonskiy
,
B.
Andreev
,
F.
Kleemiss
,
J.
Beckmann
, and
M.
Vogt
, “
A small cationic organo–copper cluster as thermally robust highly photo- and electroluminescent
,”
Mater. J. Am. Chem. Soc.
142
(
1
),
373
381
(
2020
).
57.
T.
Le Bahers
,
E.
Brémond
,
I.
Ciofini
, and
C.
Adamo
, “
Nature of vertical excited states of dyes containing metals for DSSCs applications: Insights from TD-DFT and density based indexes
,”
Phys. Chem. Chem. Phys.
16
,
14435
14444
(
2014
).
58.
A.
Yoshimura
,
M. Z.
Hoffman
, and
H.
Sun
, “
An evaluation of the excited state absorption spectrum of Ru(bpy)32+ in aqueous and acetonitrile solutions
,”
J. Photochem. Photobiol. A: Chem.
70
(
1
),
29
33
(
1993
).
59.
E.
Jakubikova
,
W.
Chen
,
D. M.
Dattelbaum
,
F. N.
Rein
,
R. C.
Rocha
,
R. L.
Martin
, and
E. R.
Batista
, “
Electronic structure and spectroscopy of [Ru(tpy)2]2+, [Ru(tpy)(bpy)(H2O)]2+, and [Ru(tpy)(bpy)(Cl)]+
,”
Inorg. Chem.
48
,
10720
10725
(
2009
).
60.
A. W.
McKinley
,
P.
Lincoln
, and
E. M.
Tuite
, “
Environmental effects on the photophysics of transition metal complexes with dipyrido [2,3-a:3′,2′-c]phenazine (dppz) and related ligands
,”
Coord. Chem. Rev.
255
,
2676
2692
(
2011
).
61.
K.
Kobayashi
,
H.
Ohtsu
,
K.
Nozaki
,
S.
Kitagawa
, and
K.
Tanaka
, “
Photochemical properties and reactivity of a Ru compound containing an NAD/NADH-functionalized 1,10-phenanthroline ligand
,”
Inorg. Chem.
55
(
5
),
2076
2084
(
2016
).
62.
H.
Torieda
,
K.
Nozaki
,
A.
Yoshimura
, and
T.
Ohno
, “
Low quantum yields of relaxed electron transfer products of moderately coupled ruthenium(II)−cobalt(III) compounds on the subpicosecond laser excitation
,”
J. Phys. Chem. A
108
,
4819
4829
(
2004
).
63.
Y.
Sun
,
S. N.
Collins
,
L. E.
Joyce
, and
C.
Turro
, “
Unusual photophysical properties of a ruthenium(II) complex related to [Ru(bpy)2(dppz)]2+
,”
Inorg. Chem.
49
(
9
),
4257
4262
(
2010
).
64.
C.
Bhaumik
,
S.
Das
,
D.
Maity
, and
S.
Baitalik
, “
Luminescent bis-tridentate ruthenium(II) and osmium(II) complexes based on terpyridyl-imidazole ligand: Synthesis, structural characterization, photophysical, electrochemical, and solvent dependence studies
,”
Dalton Trans.
41
,
2427
2438
(
2012
).
65.
M.
Campetella
,
F.
Maschietto
,
M. J.
Frisch
,
G.
Scalmani
,
I.
Ciofini
, and
C.
Adamo
, “
Charge transfer excitations in TDDFT: A ghost-hunter index
,”
J. Comput. Chem.
38
,
2151
2156
(
2017
).
66.
R. S.
Mulliken
, “
Molecular compounds and their spectra. II
,”
J. Am. Chem. Soc.
74
,
811
824
(
1952
).
67.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,”
Recent Adv. Density Funct. Methods
1
,
155
192
(
1995
).
68.
F.
Maschietto
,
M.
Campetella
,
M. J.
Frisch
,
G.
Scalmani
,
C.
Adamo
, and
I.
Ciofini
, “
How are the charge transfer descriptors affected by the quality of the underpinning electronic density?
,”
J. Comput. Chem.
39
,
735
742
(
2018
).
69.
M.
Pastore
,
X.
Assfeld
,
E.
Mosconi
,
A.
Monari
, and
T.
Etienne
, “
Unveiling the nature of post-linear response Z-vector method for time-dependent density functional theory
,”
J. Chem. Phys.
147
,
024108
(
2017
).
70.
N. C.
Handy
and
H. F.
Schaefer
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
71.
F.
Furche
and
R.
Ahlrichs
, “
Adiabatic time-dependent density functional methods for excited state properties
,”
J. Chem. Phys.
117
,
7433
7447
(
2002
).
72.
M. J.
Frisch
 et al, Gaussian 16, Revision B.01,
Gaussian, Inc.
,
2016
.
73.
M.
Cossi
and
V.
Barone
, “
Time-dependent density functional theory for molecules in liquid solutions
,”
J. Chem. Phys.
115
,
4708
4717
(
2001
).
74.
H. C.
Zhao
,
B.-L.
Fu
,
D.
Schweinfurth
,
J. P.
Harney
,
B.
Sarkar
,
M.-K.
Tsai
, and
J.
Rochford
, “
Tuning oxyquinolate non-innocence at the ruthenium polypyridyl core
,”
Eur. J. Inorg. Chem.
2013
(
25
),
4410
4420
.
75.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
76.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
77.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
78.
L. E.
Roy
,
P. J.
Hay
, and
R. L.
Martin
, “
Revised basis sets for the LANL effective core potentials
,”
J. Chem. Theory Comput.
4
,
1029
1031
(
2008
).
79.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
80.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
81.
A.
Chantzis
,
T.
Very
,
A.
Monari
, and
X.
Assfeld
, “
Improved treatment of surrounding effects: UV/vis absorption properties of a solvated Ru(II) complex
,”
J. Chem. Theory Comput.
8
,
1536
1541
(
2012
).

Supplementary Material

You do not currently have access to this content.