The theory behind computation of absolute binding free energies using explicit-solvent molecular simulations is well-established, yet somewhat complex, with counter-intuitive aspects. This leads to frequent frustration, common misconceptions, and sometimes erroneous numerical treatment. To improve this, we present the main practically relevant segments of the theory with constant reference to physical intuition. We pinpoint the role of the implicit or explicit definition of the bound state (or the binding site) to make a robust link between an experimental measurement and a computational result. We clarify the role of symmetry and discuss cases where symmetry number corrections have been misinterpreted. In particular, we argue that symmetry corrections as classically presented are a source of confusion and could be advantageously replaced by restraint free energy contributions. We establish that contrary to a common intuition, partial or missing sampling of some modes of symmetric bound states does not affect the calculated decoupling free energies. Finally, we review these questions and pitfalls in the context of a few common practical situations: binding to a symmetric receptor (equivalent binding sites), binding of a symmetric ligand (equivalent poses), and formation of a symmetric complex, in the case of homodimerization.

1.
P. A.
Kollman
,
I.
Massova
,
C.
Reyes
,
B.
Kuhn
,
S.
Huo
,
L.
Chong
,
M.
Lee
,
T.
Lee
,
Y.
Duan
,
W.
Wang
,
O.
Donini
,
P.
Cieplak
,
J.
Srinivasan
,
D. A.
Case
, and
T. E.
Cheatham
, “
Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models
,”
Acc. Chem. Res.
33
,
889
897
(
2000
).
2.
S.
Holderbach
,
L.
Adam
,
B.
Jayaram
,
R. C.
Wade
, and
G.
Mukherjee
, “
RASPD+: Fast protein-ligand binding free energy prediction using simplified physicochemical features
,”
Front. Mol. Biosci.
7
,
601065
(
2020
).
3.
C.
Chipot
,
A. E.
Mark
,
V. S.
Pande
, and
T.
Simonson
, “
Applications of free energy calculations to chemistry and biology
,” in
Free Energy Calculations Theory and Applications in Chemistry and Biology
, edited by
C.
Chipot
and
A.
Pohorille
(
Springer
,
2007
), pp.
463
492
.
4.
D. L.
Mobley
and
M. K.
Gilson
, “
Predicting binding free energies: Frontiers and benchmarks
,”
Annu. Rev. Biophys.
46
,
531
558
(
2017
).
5.
D. L.
Mobley
and
P. V.
Klimovich
, “
Perspective: Alchemical free energy calculations for drug discovery
,”
J. Chem. Phys.
137
,
230901
(
2012
).
6.
M.
Aldeghi
,
A.
Heifetz
,
M. J.
Bodkin
,
S.
Knapp
, and
P. C.
Biggin
, “
Predictions of ligand selectivity from absolute binding free energy calculations
,”
J. Am. Chem. Soc.
139
,
946
957
(
2017
).
7.
L.
Jiang
,
Y.
Gao
,
F.
Mao
,
Z.
Liu
, and
L.
Lai
, “
Potential of mean force for protein–protein interaction studies
,”
Proteins. Struct. Funct. Genet.
46
,
190
196
(
2002
).
8.
D.
Suh
,
S.
Jo
,
W.
Jiang
,
C.
Chipot
, and
B.
Roux
, “
String method for protein–protein binding free-energy calculations
,”
J. Chem. Theory Comput.
15
,
5829
5844
(
2019
).
9.
T.
Siebenmorgen
and
M.
Zacharias
, “
Computational prediction of protein–protein binding affinities
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1448
(
2020
).
10.
D.
Jakubec
and
J.
Vondrášek
, “
Efficient estimation of absolute binding free energy for a homeodomain–DNA complex from nonequilibrium pulling simulations
,”
J. Chem. Theory Comput.
16
,
2034
2041
(
2020
).
11.
L. F.
Song
and
K. M.
Merz
, “
Evolution of alchemical free energy methods in drug discovery
,”
J. Chem. Inf. Model.
60
,
5308
5318
(
2020
).
12.
Z.
Cournia
,
B. K.
Allen
,
T.
Beuming
,
D. A.
Pearlman
,
B. K.
Radak
, and
W.
Sherman
, “
Rigorous free energy simulations in virtual screening
,”
J. Chem. Inf. Model.
60
,
4153
4169
(
2020
).
13.
J.
Hermans
and
S.
Shankar
, “
The free energy of xenon binding to myoglobin from molecular dynamics simulation
,”
Isr. J. Chem.
27
,
225
227
(
1986
).
14.
B.
Roux
,
M.
Nina
,
R.
Pomès
, and
J. C.
Smith
, “
Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: A molecular dynamics free energy perturbation study
,”
Biophys. J.
71
,
670
681
(
1996
).
15.
M. K.
Gilson
,
J. A.
Given
,
B. L.
Bush
, and
J. A.
McCammon
, “
The statistical-thermodynamic basis for computation of binding affinities: A critical review
,”
Biophys. J.
72
,
1047
1069
(
1997
).
16.
V.
Helms
and
R. C.
Wade
, “
Hydration energy landscape of the active site cavity in cytochrome P450cam
,”
Proteins. Struct. Funct. Genet.
32
,
381
396
(
1998
).
17.
H.
Luo
and
K.
Sharp
, “
On the calculation of absolute macromolecular binding free energies
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
10399
10404
(
2002
).
18.
S.
Boresch
,
F.
Tettinger
,
M.
Leitgeb
, and
M.
Karplus
, “
Absolute binding free energies: A quantitative approach for their calculation
,”
J. Phys. Chem. B
107
,
9535
9551
(
2003
).
19.
M.
Mihailescu
and
M. K.
Gilson
, “
On the theory of noncovalent binding
,”
Biophys. J.
87
,
23
36
(
2004
).
20.
H.-J.
Woo
and
B.
Roux
, “
Calculation of absolute protein–ligand binding free energy from computer simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6825
6830
(
2005
).
21.
D. L.
Mobley
,
J. D.
Chodera
, and
K. A.
Dill
, “
On the use of orientational restraints and symmetry corrections in alchemical free energy calculations
,”
J. Chem. Phys.
125
,
084902
(
2006
).
22.
S.
Miyamoto
and
P. A.
Kollman
, “
Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches
,”
Proteins: Struct., Funct., Bioinf.
16
,
226
245
(
1993
).
23.
Y.
Deng
and
B.
Roux
, “
Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A mutant
,”
J. Chem. Theory Comput.
2
,
1255
1273
(
2006
).
24.
A. S. J. S.
Mey
,
B.
Allen
,
H. E. B.
Macdonald
,
J. D.
Chodera
,
M.
Kuhn
,
J.
Michel
,
D. L.
Mobley
,
L. N.
Naden
,
S.
Prasad
,
A.
Rizzi
,
J.
Scheen
,
M. R.
Shirts
,
G.
Tresadern
, and
H.
Xu
, “
Best practices for alchemical free energy calculations
,”
Living J. Comput. Mol. Sci.
2
,
18378
(
2020
).
25.
See http://www.alchemistry.org/wiki/Tutorials for a list of pedagogical tutorials about free energy calculations.
26.
J. M. J.
Swanson
,
R. H.
Henchman
, and
J. A.
McCammon
, “
Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy
,”
Biophys. J.
86
,
67
74
(
2004
).
27.
S.
Genheden
and
U.
Ryde
, “
The MM/PBSA and MM/GBSA methods to estimate ligand–binding affinities
,”
Expert Opin. Drug Discovery
10
,
449
461
(
2015
).
28.
R.
Salari
,
T.
Joseph
,
R.
Lohia
,
J.
Hénin
, and
G.
Brannigan
, “
A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol
,”
J. Chem. Theory Comput.
14
,
6560
6573
(
2018
).
29.
W. L.
Jorgensen
, “
Interactions between amides in solution and the thermodynamics of weak binding
,”
J. Am. Chem. Soc.
111
,
3770
3771
(
1989
).
30.
J.
Pranata
and
W. L.
Jorgensen
, “
Monte Carlo simulations yield absolute free energies of binding theory and the OPLS potential functions lar dynamics
,”
Tetrahedron
47
,
2491
2501
(
1991
).
31.
D.
Shoup
and
A.
Szabo
, “
Role of diffusion in ligand binding to macromolecules and cell-bound receptors
,”
Biophys. J.
40
,
33
39
(
1982
).
32.
D. H. D.
Jong
,
L. V.
Schafer
,
A. H. D.
Vries
,
S. J.
Marrink
,
H. J. C.
Berendsen
, and
H.
Grubmüller
, “
Determining equilibrium constants for dimerization reactions from molecular dynamics simulations
,”
J. Comput. Chem.
32
,
1919
1928
(
2011
).
33.
A.
Jost Lopez
,
P. K.
Quoika
,
M.
Linke
,
G.
Hummer
, and
J.
Köfinger
, “
Quantifying protein–protein interactions in molecular simulations
,”
J. Phys. Chem. B
124
,
4673
4685
(
2020
).
34.
E.
Gallicchio
and
R. M.
Levy
,
Advances in Protein Chemistry and Structural Biology
, 1st ed. (
Elsevier
,
2011
), Vol. 85, pp.
27
80
.
35.
Y.
Deng
and
B.
Roux
, “
Computations of standard binding free energies with molecular dynamics simulations
,”
J. Phys. Chem. B
113
,
2234
2246
(
2009
).
36.
S.
Doudou
,
N. A.
Burton
, and
R. H.
Henchman
, “
Standard free energy of binding from a one-dimensional potential of mean force
,”
J. Chem. Theory Comput.
5
,
909
918
(
2009
).
37.
J. C.
Gumbart
,
B.
Roux
, and
C.
Chipot
, “
Standard binding free energies from computer simulations: What is the best strategy?
,”
J. Chem. Theory Comput.
9
,
794
802
(
2013
).
38.
R. A.
Corey
,
O. N.
Vickery
,
M. S. P.
Sansom
, and
P. J.
Stansfeld
, “
Insights into membrane protein–lipid interactions from free energy calculations
,”
J. Chem. Theory Comput.
15
,
5727
5736
(
2019
).
39.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
,
245
268
(
1976
).
40.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
41.
Z.
Tan
,
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
, “
Theory of binless multi-state free energy estimation with applications to protein-ligand binding
,”
J. Chem. Phys.
136
,
144102
(
2012
).
42.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
313
(
1935
).
43.
N.
Lu
,
D. A.
Kofke
, and
T. B.
Woolf
, “
Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods
,”
J. Comput. Chem.
25
,
28
40
(
2003
).
44.
T.
Simonson
and
B.
Roux
, “
Concepts and protocols for electrostatic free energies
,”
Mol. Simul.
42
,
1090
1101
(
2016
).
45.
G. J.
Rocklin
,
D. L.
Mobley
,
K. A.
Dill
, and
P. H.
Hünenberger
, “
Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects
,”
J. Chem. Phys.
139
,
184103
(
2013
).
46.
M. M.
Reif
and
C.
Oostenbrink
, “
Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation
,”
J. Comput. Chem.
35
,
227
243
(
2014
).
47.
J.
Janin
, “
For Guldberg and Waage, with love and cratic entropy
,”
Proteins. Struct. Funct. Genet.
24
,
i
(
1996
).
48.
W. L.
Jorgensen
,
J. K.
Buckner
,
S.
Boudon
, and
J.
Tirado‐Rives
, “
Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water
,”
J. Chem. Phys.
89
,
3742
3746
(
1988
).
49.
H.
Fujitani
,
Y.
Tanida
, and
A.
Matsuura
, “
Massively parallel computation of absolute binding free energy with well-equilibrated states
,”
Phys. Rev. E
79
,
021914
(
2009
).
50.
Y.
Sakae
,
B. W.
Zhang
,
R. M.
Levy
, and
N.
Deng
, “
Absolute protein binding free energy simulations for ligands with multiple poses, a thermodynamic path that avoids exhaustive enumeration of the poses
,”
J. Comput. Chem.
41
,
56
68
(
2020
).
51.
N.
Deng
,
D.
Cui
,
B. W.
Zhang
,
J.
Xia
,
J.
Cruz
, and
R.
Levy
, “
Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands
,”
Phys. Chem. Chem. Phys.
20
,
17081
17092
(
2018
).
52.
V.
Helms
and
R. C.
Wade
, “
Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: A molecular dynamics study
,”
Biophys. J.
69
,
810
824
(
1995
).
53.
P.
Procacci
, “
Alchemical determination of drug-receptor binding free energy: Where we stand and where we could move to
,”
J. Mol. Graphics Modell.
71
,
233
241
(
2017
).
54.
H.
Fujitani
,
Y.
Tanida
,
M.
Ito
,
G.
Jayachandran
,
C. D.
Snow
,
M. R.
Shirts
,
E. J.
Sorin
, and
V. S.
Pande
, “
Direct calculation of the binding free energies of FKBP ligands
,”
J. Chem. Phys.
123
,
084108
(
2005
).
55.
M.
Kumar
,
T.
Simonson
,
G.
Ohanessian
, and
C.
Clavaguéra
, “
Structure and thermodynamics of Mg: Phosphate interactions in water: A simulation study
,”
ChemPhysChem
16
,
658
665
(
2015
).
56.
D. M.
De Oliveira
,
S. R.
Zukowski
,
V.
Palivec
,
J.
Hénin
,
H.
Martinez-Seara
,
D.
Ben-Amotz
,
P.
Jungwirth
, and
E.
Duboué-Dijon
, “
Binding of divalent cations to acetate: Molecular simulations guided by Raman spectroscopy
,”
Phys. Chem. Chem. Phys.
22
,
24014
24027
(
2020
).
57.
J.
Wang
,
Y.
Deng
, and
B.
Roux
, “
Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials
,”
Biophys. J.
91
,
2798
2814
(
2006
).
58.
R. D.
Groot
, “
The association constant of a flexible molecule and a single atom: Theory and simulation
,”
J. Chem. Phys.
97
,
3537
3549
(
1992
).
59.
R. M.
Neumann
, “
Molecular association at the microscopic level
,”
Can. J. Phys.
89
,
793
797
(
2011
).
60.
D.
Chandler
and
L. R.
Pratt
, “
Statistical mechanics of chemical equilibria and intramolecular structures of nonrigid molecules in condensed phases
,”
J. Chem. Phys.
65
,
2925
2940
(
1976
).
61.
M. K.
Gilson
and
K. K.
Irikura
, “
Symmetry numbers for rigid, flexible, and fluxional molecules: Theory and applications
,”
J. Phys. Chem. B
114
,
16304
16317
(
2010
).
62.
M. K.
Gilson
and
K. K.
Irikura
, “
Correction to ‘symmetry numbers for rigid, flexible, and fluxional molecules: Theory and applications’
,”
J. Phys. Chem. B
117
,
3061
(
2013
).
63.
D. N.
LeBard
,
J.
Hénin
,
R. G.
Eckenhoff
,
M. L.
Klein
, and
G.
Brannigan
, “
General anesthetics predicted to block the GLIC pore with micromolar affinity
,”
PLoS Comput. Biol.
8
,
e1002532
(
2012
).
64.
J.
Hermans
and
L.
Wang
, “
Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. application to a complex of benzene and mutant T4 lysozyme
,”
J. Am. Chem. Soc.
119
,
2707
2714
(
1997
).
65.

Our formalism differs from Gilson et al.’s because their definition of the complex includes an indicator function of bound configurations, which is also used as a restraint in simulations. Such restraint terms can behave as non-dissociative bonds. If they are integrated into the definition of the complex and reduce its symmetry, then they give rise to a non-zero symmetry correction. Thus, the symmetry correction of Gilson et al. plays the role of the symmetry contributions to ΔGcoupledrestsite in our formalism.

66.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
,
1420
1426
(
1954
).
67.
U.
Derewenda
,
Z.
Derewenda
,
E. J.
Dodson
,
G. G.
Dodson
,
C. D.
Reynolds
,
G. D.
Smith
,
C.
Sparks
, and
D.
Swenson
, “
Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer
,”
Nature
338
,
594
596
(
1989
).
68.
V.
Palivec
,
C. M.
Viola
,
M.
Kozak
,
T. R.
Ganderton
,
K.
Křížková
,
J. P.
Turkenburg
,
P.
Haluŝková
,
L.
Žáková
,
J.
Jiráĉek
,
P.
Jungwirth
, and
A. M.
Brzozowski
, “
Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules
,”
J. Biol. Chem.
292
,
8342
8355
(
2017
).
69.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
70.
C. R.
Cantor
and
P. R.
Schimmel
,
Biophysical Chemistry. Part III: The Behavior of Biological Macromolecules
(
W. H. Freeman
,
1980
).
71.
T.
Dudev
and
C.
Lim
, “
Effect of carboxylate-binding mode on metal binding/selectivity
,”
Acc. Chem. Res.
40
,
85
(
2007
).
72.
H.
Einspahr
and
C. E.
Bugg
, “
The geometry of calcium carboxylate interactions in crystalline complexes
,”
Acta Crystallogr., Sect. B
37
,
1044
1052
(
1981
).
73.
M. D.
Daily
,
M. D.
Baer
, and
C. J.
Mundy
, “
Divalent ion parameterization strongly affects conformation and interactions of an anionic biomimetic polymer
,”
J. Phys. Chem. B
120
,
2198
2208
(
2016
).
74.
T.
Martinek
,
E.
Duboué-Dijon
,
Š.
Timr
,
P. E.
Mason
,
K.
Baxová
,
H. E.
Fischer
,
B.
Schmidt
,
E.
Pluhařová
, and
P.
Jungwirth
, “
Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering
,”
J. Chem. Phys.
148
,
222813
(
2018
).
75.
P.
Li
,
B. P.
Roberts
,
D. K.
Chakravorty
, and
K. M.
Merz
, “
Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent
,”
J. Chem. Theory Comput.
9
,
2733
2748
(
2013
).
76.
K. M.
Callahan
,
N. N.
Casillas-Ituarte
,
M.
Roeselová
,
H. C.
Allen
, and
D. J.
Tobias
, “
Solvation of magnesium dication: Molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions
,”
J. Phys. Chem. A
114
,
5141
5148
(
2010
).
77.
A. E.
Eriksson
,
W. A.
Baase
,
J. A.
Wozniak
, and
B. W.
Matthews
, “
A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene
,”
Nature
355
,
371
373
(
1992
).
78.
M.
Merski
and
B. K.
Shoichet
, “
Engineering a model protein cavity to catalyze the kemp elimination
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16179
16183
(
2012
).
79.
S. E.
Boyce
,
D. L.
Mobley
,
G. J.
Rocklin
,
A. P.
Graves
,
K. A.
Dill
, and
B. K.
Shoichet
, “
Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site
,”
J. Mol. Biol.
394
,
747
763
(
2009
).
80.
J.
Domański
,
G.
Hedger
,
R. B.
Best
,
P. J.
Stansfeld
, and
M. S. P.
Sansom
, “
Convergence and sampling in determining free energy landscapes for membrane protein association
,”
J. Phys. Chem. B
121
,
3364
3375
(
2016
).
81.
J.
Hénin
,
A.
Pohorille
, and
C.
Chipot
, “
Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A
,”
J. Am. Chem. Soc.
127
,
8478
8484
(
2005
).
82.
J.
Hénin
,
A.
Pohorille
, and
C.
Chipot
, “
Insights into the recognition and association of transmembrane α-helices. the free energy of α-helix dimerization in glycophorin A
,”
J. Am. Chem. Soc.
132
,
9510
(
2010
).
83.
D.
Van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
84.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
You do not currently have access to this content.