We extend Wertheim’s thermodynamic perturbation theory to derive the association free energy of a multicomponent mixture for which double bonds can form between any two pairs of the molecules’ arbitrary number of bonding sites. This generalization reduces in limiting cases to prior theories that restrict double bonding to at most one pair of sites per molecule. We apply the new theory to an associating mixture of colloidal particles (“colloids”) and flexible chain molecules (“linkers”). The linkers have two functional end groups, each of which may bond to one of several sites on the colloids. Due to their flexibility, a significant fraction of linkers can “loop” with both ends bonding to sites on the same colloid instead of bridging sites on different colloids. We use the theory to show that the fraction of linkers in loops depends sensitively on the linker end-to-end distance relative to the colloid bonding-site distance, which suggests strategies for mitigating the loop formation that may otherwise hinder linker-mediated colloidal assembly.

1.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. I. Statistical thermodynamics
,”
J. Stat. Phys.
35
,
19
34
(
1984
).
2.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations
,”
J. Stat. Phys.
35
,
35
47
(
1984
).
3.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. III. Multiple attraction sites
,”
J. Stat. Phys.
42
,
459
476
(
1986
).
4.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
,”
J. Stat. Phys.
42
,
477
492
(
1986
).
5.
L.
Rovigatti
,
F.
Bomboi
, and
F.
Sciortino
, “
Accurate phase diagram of tetravalent DNA nanostars
,”
J. Chem. Phys.
140
,
154903
(
2014
).
6.
E.
Locatelli
,
P. H.
Handle
,
C. N.
Likos
,
F.
Sciortino
, and
L.
Rovigatti
, “
Condensation and demixing in solutions of DNA anostars and their mixtures
,”
ACS Nano
11
,
2094
2102
(
2017
).
7.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
8.
E.
Bianchi
,
P.
Tartaglia
,
E.
La Nave
, and
F.
Sciortino
, “
Fully solvable equilibrium self-assembly process: Fine-tuning the clusters size and the connectivity in patchy particle systems
,”
J. Phys. Chem. B
111
,
11765
11769
(
2007
).
9.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
, “
Reversible gels of patchy particles: Role of the valence
,”
J. Chem. Phys.
131
,
014504
(
2009
).
10.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. M.
Telo da Gama
, and
F.
Sciortino
, “
Reentrant phase diagram of network fluids
,”
Phys. Rev. Lett.
106
,
085703
(
2011
).
11.
W. G.
Chapman
,
K. E.
Gubbins
,
C. G.
Joslin
, and
C. G.
Gray
, “
Theory and simulation of associating liquid mixtures
,”
Fluid Phase Equilib.
29
,
337
346
(
1986
).
12.
C. G.
Joslin
,
C. G.
Gray
,
W. G.
Chapman
, and
K. E.
Gubbins
, “
Theory and simulation of associating liquid mixtures. II
,”
Mol. Phys.
62
,
843
860
(
1987
).
13.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
, “
Phase equilibria of associating fluids: Spherical molecules with multiple bonding sites
,”
Mol. Phys.
65
,
1
31
(
1988
).
14.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
, “
Phase equilibria of associating fluids: Chain molecules with multiple bonding sites
,”
Mol. Phys.
65
,
1057
1079
(
1988
).
15.
E. A.
Müller
and
K. E.
Gubbins
, “
Molecular-based equations of state for associating fluids: A review of SAFT and related approaches
,”
Ind. Eng. Chem. Res.
40
,
2193
2211
(
2001
).
16.
M. P.
Howard
,
R. B.
Jadrich
,
B. A.
Lindquist
,
F.
Khabaz
,
R. T.
Bonnecaze
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Structure and phase behavior of polymer-linked colloidal gels
,”
J. Chem. Phys.
151
,
124901
(
2019
).
17.
B. A.
Lindquist
,
R. B.
Jadrich
,
D. J.
Milliron
, and
T. M.
Truskett
, “
On the formation of equilibrium gels via a macroscopic bond limitation
,”
J. Chem. Phys.
145
,
074906
(
2016
).
18.
C. A.
Saez Cabezas
,
G. K.
Ong
,
R. B.
Jadrich
,
B. A.
Lindquist
,
A.
Agrawal
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8925
8930
(
2018
).
19.
M. N.
Dominguez
,
M. P.
Howard
,
J. M.
Maier
,
S. A.
Valenzuela
,
Z. M.
Sherman
,
J. F.
Reuther
,
L. C.
Reimnitz
,
J.
Kang
,
S. H.
Cho
,
S. L.
Gibbs
,
A. K.
Menta
,
D. L.
Zhuang
,
A.
van der Stok
,
S. J.
Kline
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Assembly of linked nanocrystal colloids by reversible covalent bonds
,”
Chem. Mater.
32
,
10235
10245
(
2020
).
20.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
21.
R. P.
Sear
and
G.
Jackson
, “
Thermodynamic perturbation theory for association into douby bonded dimers
,”
Mol. Phys.
82
,
1033
1048
(
1994
).
22.
R. P.
Sear
and
G.
Jackson
, “
Thermodynamic perturbation theory for association into chains and rings
,”
Phys. Rev. E
50
,
386
394
(
1994
).
23.
A.
Galindo
,
S. J.
Burton
,
G.
Jackson
,
D. P.
Visco
, Jr.
, and
D. A.
Kofke
, “
Improved models for the phase behaviour of hydrogen fluoride: Chain and ring aggregates in the SAFT approach and the AEOS model
,”
Mol. Phys.
100
,
2241
2259
(
2002
).
24.
A. S.
Avlund
,
G. M.
Kontogeorgis
, and
W. G.
Chapman
, “
Intramolecular association within the SAFT framework
,”
Mol. Phys.
109
,
1759
1769
(
2011
).
25.
J. M.
Tavares
,
L.
Rovigatti
, and
F.
Sciortino
, “
Quantitative description of the self-assembly of patchy particles into chains and rings
,”
J. Chem. Phys.
137
,
044901
(
2012
).
26.
L.
Rovigatti
,
J. M.
Tavares
, and
F.
Sciortino
, “
Self-assembly in chains, rings, and branches: A single component system with two critical points
,”
Phys. Rev. Lett.
111
,
168302
(
2013
).
27.
B. D.
Marshall
and
W. G.
Chapman
, “
Thermodynamic perturbation theory for associating fluids with small bond angles: Effects of steric hindrance, ring formation, and double bonding
,”
Phys. Rev. E
87
,
052307
(
2013
).
28.
B. D.
Marshall
and
W. G.
Chapman
, “
Molecular theory for the phase equilibria and cluster distribution of associating fluids with small bond angles
,”
J. Chem. Phys.
139
,
054902
(
2013
).
29.
B. D.
Marshall
, “
A general mixture equation of state for double bonding carboxylic acids with ≥2 association sites
,”
J. Chem. Phys.
148
,
174103
(
2018
).
30.
K.
Hoppe
,
E.
Geidel
,
H.
Weller
, and
A.
Eychmüller
, “
Covalently bound CdTe nanocrystals
,”
Phys. Chem. Chem. Phys.
4
,
1704
1706
(
2002
).
31.
W.
Maneeprakorn
,
M. A.
Malik
, and
P.
O’Brien
, “
Developing chemical strategies for the assembly of nanoparticles into mesoscopic objects
,”
J. Am. Chem. Soc.
132
,
1780
1781
(
2010
).
32.
R. J.
Macfarlane
,
B.
Lee
,
M. R.
Jones
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Nanoparticle superlattice engineering with DNA
,”
Science
334
,
204
208
(
2011
).
33.
S.
Borsley
and
E. R.
Kay
, “
Dynamic covalent assembly and disassembly of nanoparticle aggregates
,”
Chem. Commun.
52
,
9117
9120
(
2016
).
34.
Y.
Wang
,
P. J.
Santos
,
J. M.
Kubiak
,
X.
Guo
,
M. S.
Lee
, and
R. J.
Macfarlane
, “
Multistimuli responsive nanocomposite tectons for pathway dependent self-assembly and acceleration of covalent bond formation
,”
J. Am. Chem. Soc.
141
,
13234
13243
(
2019
).
35.
N.
Marro
,
F.
della Sala
, and
E. R.
Kay
, “
Programmable dynamic covalent nanoparticle building blocks with complementary reactivity
,”
Chem. Sci.
11
,
372
383
(
2020
).
36.
C. A.
Mirkin
,
R. L.
Letsinger
,
R. C.
Mucic
, and
J. J.
Storhoff
, “
A DNA-based method for rationally assembling nanoparticles into macroscopic materials
,”
Nature
382
,
607
609
(
1996
).
37.
A. P.
Alivisatos
,
K. P.
Johnsson
,
X.
Peng
,
T. E.
Wilson
,
C. J.
Loweth
,
M. P.
Bruchez
, and
P. G.
Schultz
, “
“Organization of ’nanocrystal molecules’ using DNA
,”
Nature
382
,
609
611
(
1996
).
38.
H.
Xiong
,
D.
van der Lelie
, and
O.
Gang
, “
Phase behavior of nanoparticles assembled by DNA linkers,
Phys. Rev. Lett.
102
,
015504
(
2009
).
39.
D.
Zanchet
,
C. M.
Micheel
,
W. J.
Parak
,
D.
Gerion
, and
A. P.
Alivisatos
, “
Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates
,”
Nano Lett.
1
,
32
35
(
2001
).
40.
B. D.
Marshall
and
W. G.
Chapman
, “
Thermodynamic perturbation theory for associating molecules
,” in
Advances in Chemical Physics
, edited by
S. A.
Rice
and
A. R.
Dinner
(
John Wiley & Sons, Inc.
,
2016
), Vol. 160, pp.
1
47
.
41.
W.
Zmpitas
and
J.
Gross
, “
Detailed pedagogical review and analysis of Wertheim’s thermodynamic perturbation theory
,”
Fluid Phase Equilib.
428
,
121
152
(
2016
).
42.
H. C.
Andersen
, “
Cluster methods in equilibrium statistical mechanics
,” in
Statistical Mechanics
, Modern Theoretical Chemistry Vol. 5, edited by
B. J.
Berne
(
Springer
,
1977
), pp.
1
45
.
43.

An articulation point of a connected graph is a point that, if removed, will disconnect the graph into two or more graphs.42 An irreducible graph is free of articulation points. For example, a pair of points or any closed cycle of points is irreducible, but three points bonded collinearly are not irreducible because the middle point is an articulation point.

44.

AB denotes that A is a subset of B, including the improper subset A = B.

45.

A partition of set A is a grouping of the elements of A into one or more non-empty sets using every element exactly once. For example, if A = {a, b, c}, then {{a}, {b}, {c}}, {{a}, {b, c}}, {{a, b}, {c}}, {{a, c}, {b}}, and {{a, b, c}} are all partitions of A. P(A) denotes the set of all possible partitions of A. The last partition, into only a single subset {A}, is called an improper partition.

46.

AB = {aA|aB} denotes the set difference, i.e., all elements that are in A but not in B.

47.

Forgiving some abuse of notation, the label of a single site A should be replaced by a set {A} when it represents a set of bonded sites.

48.

|A| denotes the number of elements in set A.

49.

AB denotes that A is a proper subset of B, i.e., there is at least one element of B that is not in A so AB.

50.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
472
(
1970
).
51.
R. P.
Sear
and
G.
Jackson
, “
The ring integral in a thermodynamic perturbation theory for association
,”
Mol. Phys.
87
,
517
521
(
1996
).
52.
M. S.
Wertheim
, “
Thermodynamic perturbation theory of polymerization
,”
J. Chem. Phys.
87
,
7323
7331
(
1987
).
53.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
54.
M.
Fuchs
and
K. S.
Schweizer
, “
Structure of colloid–polymer suspensions
,”
J. Phys.: Condens. Matter
14
,
R239
R269
(
2002
).
55.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
56.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
3631
(
1986
).
57.
A.
Haghmoradi
,
B. D.
Marshall
, and
W. G.
Chapman
, “
Beyond Wertheim’s multi-density theory: Steric hindrance and associated rings in a two-density formalism for binary mixtures of molecules with two associating sites
,”
J. Chem. Eng. Data
,
65
,
5743
5752
(
2020
).
58.
M. P.
Howard
,
Z. M.
Sherman
,
A. N.
Sreenivasan
,
S. A.
Valenzuela
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Effects of linker flexibility on phase behavior and structure of linked colloidal gels
,” arXiv:2011.12512 (
2020
).
59.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and nonequilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
60.
R. E.
Miles
, “
On random rotations in R3
,”
Biometrika
52
,
636
639
(
1965
).
61.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
62.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
63.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba: A LLVM-based Python JIT compiler
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15
,
2015
.
You do not currently have access to this content.