Cross-linked polyethylene (XLPE) has been recognized as an outstanding insulator for high-voltage power cables due to its favorable structural integrity at high temperature, low moisture sensitivity, chemical resistance, and low rates of failure due to aging. However, the roles of by-products and amorphous regions generated during the XLPE production are not clearly known at the atomistic scale. In this study, we present an eReaxFF-based molecular dynamics simulation framework with an explicit electron description verified against density functional theory data to investigate the roles of XLPE by-products and processing variables such as density and voids on the time to dielectric breakdown (TDDB) of polyethylene (PE). Our simulation results indicate that an increase in density of PE increases the TDDB; however, adding a by-product with positive electron affinity such as acetophenone can reduce the TDDB. Furthermore, during the electrical breakdown in PE, electrons tend to migrate through voids when transferring from the anode to cathode. In comparison with neutral acetophenone, we find that the acetophenone radical anion can significantly reduce the energy barrier and the reaction energy of secondary chemical reactions.

1.
Y.-L.
Xu
,
W.-J.
Mei
,
H.-L.
Yang
,
C.-M.
Li
, and
G.-H.
Song
, “
Insulation breakdown influence factors and development of cross-linked polyethylene cable
,” in
2nd Annual International Conference on Advanced Material Engineering (AME 2016)
(
Atlantis Press
,
2016
).
2.
A.
Fazal
,
M.
Hao
,
A.
Vaughan
,
G.
Chen
,
J.
Cao
, and
H.
Wang
, “
The effect of composition and processing on electric characteristics of XLPE in HVDC cable applications
,” in
2016 IEEE Electrical Insulation Conference (EIC)
(
IEEE
,
2016
), pp.
440
443
.
3.
T.
Andrews
,
R. N.
Hampton
,
A.
Smedberg
,
D.
Wald
,
V.
Waschk
, and
W.
Weissenberg
, “
The role of degassing in XLPE power cable manufacture
,”
IEEE Electr. Insul. Mag.
22
(
6
),
5
16
(
2006
).
4.
N.
Hampton
,
R.
Hartlein
,
H.
Lennartsson
,
H.
Orton
, and
R.
Ramachandran
,
Long-Life XLPE Insulated Power Cable
(
Georgia Institute of Technology
,
2007
).
5.
J.
Sahyoun
,
A.
Crepet
,
F.
Gouanve
,
L.
Keromnes
, and
E.
Espuche
, “
Diffusion mechanism of byproducts resulting from the peroxide crosslinking of polyethylene
,”
J. Appl. Polym. Sci.
134
(
9
),
44525
(
2017
).
6.
M.
Fu
,
G.
Chen
,
L. A.
Dissado
, and
J. C.
Fothergill
, “
Influence of thermal treatment and residues on space charge accumulation in XLPE for DC power cable application
,”
IEEE Trans. Dielectr. Electr. Insul.
14
(
1
),
53
(
2007
).
7.
W. A.
Thue
,
Electrical Power Cable Engineering
(
CRC Press
,
2016
).
8.
J. C.
Fothergill
, “
The coming of age of HVDC extruded power cables
,” in
Electrical Insulation Conference (EIC), 2014
(
IEEE
,
2014
), pp.
124
137
.
9.
S.
Tamboli
,
S.
Mhaske
, and
D.
Kale
,
Crosslinked Polyethylene
(
Council for Scientific and Industrial Research
,
2004
).
10.
K. S.
Suh
,
S. J.
Hwang
,
J. S.
Noh
, and
T.
Takada
, “
Effects of constituents of XLPE on the formation of space charge
,”
IEEE Trans. Dielectr. Electr. Insul.
1
(
6
),
1077
1083
(
1994
).
11.
T.
Doi
,
Y.
Tanaka
, and
T.
Takada
, “
Short interval measurement of space charge distribution in acetophenone coated low-density polyethylene
,” in
Proceedings of 5th International Conference on Properties and Applications of Dielectric Materials
(
IEEE
,
1997
), pp.
810
813
.
12.
N.
Hirai
,
Y.
Maeno
,
T.
Tanaka
,
Y.
Ohki
,
M.
Okashita
, and
T.
Maeno
, “
Roles of cumyl alcohol and crosslinked structure in homo-charge trapping in crosslinked polyethylene
,” in
2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
2003
), pp.
213
216
.
13.
N.
Hussin
and
G.
Chen
, “
The effect of acetophenone and alpha-methylstyrene on the space charge properties of low density polyethylene
,” in
2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
2008
), pp.
702
705
.
14.
N.
Amyot
,
S.
Lee
,
E.
David
, and
I.
Lee
, “
The effect of residual crosslinking by-products on the local dielectric strength of HV extruded cables
,” in
2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
2000
), pp.
743
746
, Cat. No. 00CH37132.
15.
Y.
Shao
,
K.
Sheu
,
D.
Damon
,
S.
Huang
, and
J.
Johnson
, “
Dielectric strength of crosslinked polyethylene: The effects of the volatile products of the crosslinking reaction
,” in
Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
1989
), pp.
465
470
.
16.
H.
Zhang
,
Y.
Shang
,
H.
Zhao
,
B.
Han
, and
Z.
Li
, “
Study of the effect of valence bond isomerizations on electrical breakdown by adding acetophenone to polyethylene as voltage stabilizers
,”
Comput. Theor. Chem.
1062
,
99
104
(
2015
).
17.
T.
Kanai
,
T.
Fujitomi
,
H.
Miyake
, and
Y.
Tanaka
, “
Reduction effect of cross-linking by-products on dielectric strength in polyethylene under DC stress
,” in
2017 International Symposium on Electrical Insulating Materials (ISEIM)
(
IEEE
,
2017
), pp.
489
492
.
18.
F.
Aida
,
G.
Tanimoto
,
M.
Aihara
, and
E.
Hosokawa
, “
Influence of curing by-products on dielectric loss in XLPE insulation
,” in
Annual Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
1990
), pp.
465
473
.
19.
M.
Meunier
and
N.
Quirke
, “
Molecular modeling of electron trapping in polymer insulators
,”
J. Chem. Phys.
113
(
1
),
369
376
(
2000
).
20.
H.
Zhang
,
Y.
Shang
,
M.
Li
,
H.
Zhao
,
X.
Wang
, and
B.
Han
, “
Theoretical study on the radical reaction mechanism in the cross-linking process of polyethylene
,”
RSC Adv.
5
(
110
),
90343
90353
(
2015
).
21.
A.
Moyassari
,
M.
Unge
,
M. S.
Hedenqvist
,
U. W.
Gedde
, and
F.
Nilsson
, “
First-principle simulations of electronic structure in semicrystalline polyethylene
,”
J. Chem. Phys.
146
(
20
),
204901
(
2017
).
22.
M.
Blasko
,
P.
Mach
,
A.
Antušek
, and
M.
Urban
, “
DFT modeling of cross-linked polyethylene: Role of gold atoms and dispersion interactions
,”
J. Phys. Chem. A
122
(
5
),
1496
1503
(
2018
).
23.
S.
Iwata
,
H.
Uehara
, and
T.
Takada
, “
Computational study on acetophenone in amorphous polyethylene
,”
J. Mol. Model.
23
(
10
),
274
(
2017
).
24.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y.
Zheng
,
Y. K.
Shin
,
C.
Junkermeier
,
R.
Engel-Herbert
,
M. J.
Janik
, and
H. M.
Aktulga
, “
The ReaxFF reactive force-field: Development, applications and future directions
,”
npj Comput. Mater.
2
,
15011
(
2016
).
25.
N.
Dasgupta
,
Y. K.
Shin
,
M. V.
Fedkin
, and
A.
van Duin
, “
ReaxFF molecular dynamics simulations of electrolyte–water systems at supercritical temperature
,”
J. Chem. Phys.
152
(
20
),
204502
(
2020
).
26.
Q.
Mao
,
S.
Rajabpour
,
M.
Kowalik
, and
A. C. T.
van Duin
, “
Predicting cost-effective carbon fiber precursors: Unraveling the functionalities of oxygen and nitrogen-containing groups during carbonization from ReaxFF simulations
,”
Carbon
159
,
25
36
(
2020
).
27.
M. M.
Islam
,
G.
Kolesov
,
T.
Verstraelen
,
E.
Kaxiras
, and
A. C. T.
Van Duin
, “
eReaxFF: a pseudoclassical treatment of explicit electrons within reactive force field simulations
,”
J. Chem. Theory Comput.
12
(
8
),
3463
3472
(
2016
).
28.
M. M.
Islam
and
A. C. T.
Van Duin
, “
Reductive decomposition reactions of ethylene carbonate by explicit electron transfer from lithium: An eReaxFF molecular dynamics study
,”
J. Phys. Chem. C
120
(
48
),
27128
27134
(
2016
).
29.
M. J.
Hossain
,
G.
Pawar
,
B.
Liaw
,
K. L.
Gering
,
E. J.
Dufek
, and
A. C. T.
van Duin
, “
Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A ReaxFF reactive force field study
,”
J. Chem. Phys.
152
(
18
),
184301
(
2020
).
30.
B.
Evangelisti
,
K. A.
Fichthorn
, and
A. C. T.
van Duin
, “
Development and initial applications of an e-ReaxFF description of Ag nanoclusters
,”
J. Chem. Phys.
153
(
10
),
104106
(
2020
).
31.
K.
Chenoweth
,
A. C. T.
Van Duin
, and
W. A.
Goddard
, “
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
,”
J. Phys. Chem. A
112
(
5
),
1040
1053
(
2008
).
32.
F.
Ogliaro
,
M.
Bearpark
,
J.
Heyd
,
E.
Brothers
,
K.
Kudin
,
V.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
, and
A.
Rendell
, Gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
33.
M.
Meunier
,
N.
Quirke
, and
A.
Aslanides
, “
Molecular modeling of electron traps in polymer insulators: Chemical defects and impurities
,”
J. Chem. Phys.
115
(
6
),
2876
2881
(
2001
).
34.
D.
Hong-Zhi
,
X.
Xiu-San
, and
Z.
He-Sun
, “
A kinetic model of time-dependent dielectric breakdown for polymers
,”
J. Phys. D: Appl. Phys.
27
(
3
),
591
(
1994
).
35.
S.
Palit
and
M. A.
Alam
, “
Electrical breakdown in polymers for BEOL applications: Dielectric heating and humidity effects
,” in
2014 IEEE International Reliability Physics Symposium
(
IEEE
,
2014
), pp.
BD. 1-1
BD. 1-4
.
36.
L. A.
Dissado
and
J. C.
Fothergill
,
Electrical Degradation and Breakdown in Polymers
(
IET
,
1992
), Vol. 9.
37.
D.
Li
,
L.
Zhou
,
X.
Wang
,
L.
He
, and
X.
Yang
, “
Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property
,”
Materials
12
(
11
),
1746
(
2019
).
38.
K.
Wu
,
T.
Okamoto
, and
Y.
Suzuoki
, “
Simulation study on the correlation between morphology and electrical breakdown in polyethylene
,”
J. Appl. Phys.
98
(
11
),
114102
(
2005
).
39.
Y.
Ohki
,
N.
Hirai
,
K.
Kobayashi
,
R.
Minami
,
M.
Okashita
, and
T.
Maeno
, “
Effects of byproducts of crosslinking agent on space charge formation in polyethylene-comparison between acetophenone and α-methylstyrene
,” in
2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
(
IEEE
,
2000
), pp.
535
538
, Cat. No. 00CH37132.
40.
D. A.
Horvath
and
S. M.
Avila
, “
Microscopic void detection for predicting remaining life in electric cable insulation
,”
Nucl. Technol.
143
(
2
),
171
179
(
2003
).
41.
J. C.
Fothergill
,
G. C.
Montanari
,
G. C.
Stevens
,
C.
Laurent
,
G.
Teyssedre
,
L. A.
Dissado
,
U. H.
Nilsson
, and
G.
Platbrood
, “
Electrical, microstructural, physical and chemical characterization of HV XLPE cable peelings for an electrical aging diagnostic data base
,”
IEEE Trans. Dielectr. Electr. Insul.
10
(
3
),
514
527
(
2003
).
42.
Y.
Sekii
, “
Charge generation and electrical degradation of cross-linked polyethylene
,”
IEEE Trans. Electr. Electron. Eng.
14
(
1
),
4
15
(
2019
).
43.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
You do not currently have access to this content.