Strong coupling between surface plasmons and molecular excitons may lead to the formation of new hybrid states—polaritons—that are part light and part matter in character. A key signature of this strong coupling is an anti-crossing of the exciton and surface plasmon modes on a dispersion diagram. In a recent report on strong coupling between the plasmon modes of a small silver nano-rod and a molecular dye, it was shown that when the oscillator strength of the exciton is large enough, an additional anti-crossing feature may arise in the spectral region where the real part of the permittivity of the excitonic material is zero. However, the physics behind this double anti-crossing feature is still unclear. Here, we make use of extensive transfer matrix simulations to explore this phenomenon. We show that for low oscillator strengths of the excitonic resonance, there is a single anti-crossing arising from strong coupling between the surface plasmon and the excitonic resonance, which is associated with the formation of upper and lower plasmon–exciton polaritons. As the oscillator strength is increased, we find that a new mode emerges between these upper and lower polariton states and show that this new mode is an excitonic surface mode. Our study also features an exploration of the role played by the orientation of the excitonic dipole moment and the relationship between the modes we observe and the transverse and longitudinal resonances associated with the excitonic response. We also investigate why this type of double splitting is rarely observed in experiments.

1.
J.
Bellessa
,
C.
Bonnand
,
J. C.
Plenet
, and
J.
Mugnier
, “
Strong coupling between surface plasmons and excitons in an organic semiconductor
,”
Phys. Rev. Lett.
93
,
036404
(
2004
).
2.
J.
Dintinger
,
S.
Klein
,
F.
Bustos
,
W. L.
Barnes
, and
T. W.
Ebbesen
, “
Strong coupling between surface plasmon–polaritons and organic molecules in subwavelength hole arrays
,”
Phys. Rev. B
71
,
035424
(
2005
).
3.
N. T.
Fofang
,
T.-H.
Park
,
O.
Neumann
,
N. A.
Mirin
,
P.
Nordlander
, and
N. J.
Halas
, “
Plexcitonic nanoparticles: Plasmon–exciton coupling in nanoshell-J-aggregate complexes
,”
Nano Lett.
8
,
3481
3487
(
2008
).
4.
M.
Pelton
,
M.
Sheldon
, and
J.
Khurgin
, “
Plasmon–exciton coupling
,”
Nanophotonics
8
,
513
516
(
2019
).
5.
C.
Li
,
X.
Lu
,
A.
Srivastava
,
S. D.
Storm
,
R.
Gelfand
,
M.
Pelton
,
M.
Sukharev
, and
H.
Harutyunyan
, “
Second harmonic generation from a single plasmonic nanorod strongly coupled to a Wse2 monolayer
,” arXiv:2009.08060 (
2020
).
6.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
,”
Sci. Adv.
4
,
eaas9552
(
2018
).
7.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
8.
G.
Beane
,
B. S.
Brown
,
P.
Johns
,
T.
Devkota
, and
G. V.
Hartland
, “
Strong exciton–plasmon coupling in silver nanowire nanocavities
,”
J. Phys. Chem. Lett.
9
,
1676
1681
(
2018
).
9.
M. J.
Gentile
,
S.
Núñez-Sánchez
, and
W. L.
Barnes
, “
Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures
,”
Nano Lett.
14
,
2339
2344
(
2014
).
10.
I.
Pockrand
,
A.
Brillante
, and
D.
Möbius
, “
Exciton-surface plasmon coupling: An experimental investigation
,”
J. Chem. Phys.
77
,
6289
6295
(
1982
).
11.
V. M.
Agranovich
and
A. G.
Malshukov
, “
Surface polariton spectra if the resonance with the transition layer vibrations exist
,”
Opt. Commun.
11
,
169
171
(
1974
).
12.
S.
Vassant
,
J.-P.
Hugonin
,
F.
Marquier
, and
J.-J.
Greffet
, “
Berreman mode and epsilon near zero mode
,”
Opt. Express
20
,
23971
23977
(
2012
).
13.
A. D.
Rakić
,
A. B.
Djurišić
,
J. M.
Elazar
, and
M. L.
Majewski
, “
Optical properties of metallic films for vertical-cavity optoelectronic devices
,”
Appl. Opt.
37
,
5271
5283
(
1998
).
14.
C.
Kittel
,
Introduction to Solid State Physics
, 6th ed. (
John Wiley
,
New York
,
1986
).
15.
M.
Slootsky
,
X.
Liu
,
V. M.
Menon
, and
S. R.
Forrest
, “
Room temperature Frenkel–Wannier–Mott hybridization of degenerate excitons in a strongly coupled microcavity
,”
Phys. Rev. Lett.
112
,
076401
(
2014
).
16.
K.
Georgiou
,
P.
Michetti
,
L.
Gai
,
M.
Cavazzini
,
Z.
Shen
, and
D. G.
Lidzey
, “
Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity
,”
ACS Photonics
5
,
258
266
(
2017
).
17.
V. F.
Crum
,
S. R.
Casey
, and
J. R.
Sparks
, “
Photon-mediated hybridization of molecular vibrational states
,”
Phys. Chem. Chem. Phys.
20
,
850
857
(
2018
).
18.
K. S.
Menghrajani
,
H. A.
Fernandez
,
G. R.
Nash
, and
W. L.
Barnes
, “
Hybridization of multiple vibrational modes via strong coupling using confined light fields
,”
Adv. Opt. Mater.
7
,
1900403
(
2019
).
19.
B. G.
Anex
and
W. T.
Simpson
, “
Metallic reflection from molecular crystals
,”
Rev. Mod. Phys.
32
,
466
(
1960
).
20.
J.
Lagois
and
B.
Fischer
, “
Experimental observation of surface exciton polaritons
,”
Phys. Rev. Lett.
36
,
680
683
(
1976
).
21.
I.
Hirabayashi
,
T.
Koda
,
Y.
Tokura
,
J.
Murata
, and
Y.
Kaneko
, “
Surface exciton–polariton in CuBr
,”
J. Phys. Soc. Jpn.
40
,
1215
(
1976
).
22.
M. R.
Philpott
,
A.
Brillante
,
I. R.
Pockrand
, and
J. D.
Swalen
, “
A new optical phenomenon: Exciton surface polaritons at room temperature
,”
Mol. Cryst. Liq. Cryst.
50
,
139
162
(
1979
).
23.
S.
Núñez-Sánchez
,
M.
Lopez-Garcia
,
M. M.
Murshidy
,
A. G.
Abdel-Hady
,
M.
Serry
,
A. M.
Adawi
,
J. G.
Rarity
,
R.
Oulton
, and
W. L.
Barnes
, “
Excitonic optical Tamm states: A step toward a full molecular–dielectric photonic integration
,”
ACS Photonics
3
,
743
748
(
2016
).
24.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 1st ed. (
Cambridge University Press
,
2006
).
25.
L. H.
Smith
,
M. C.
Taylor
,
I. R.
Hooper
, and
W. L.
Barnes
, “
Field profiles of coupled surface plasmon–polaritons
,”
J. Mod. Opt.
55
,
2929
2943
(
2008
).
26.
A.
Boardman
,
Electromagnetic Surface Modes
, 6th ed. (
CWiley
,
Chichester
,
1982
).
27.
A.
Hartstein
,
E.
Burstein
,
J. J.
Brion
, and
R. F.
Wallis
, “
Virtual excitation type surface polaritons at the interface of semi-infinite anisotropic media
,” in
Polaritons
, edited by
E.
Burstein
and
F.
De Martini
(
Pergamon
,
New York
,
1974
), pp.
111
116
.
28.
M.
Fox
,
Quantum Optics: An Introduction
, Oxford Master Series in Atomic, Optical, and Laser Physics (
Oxford University Press
,
Oxford
,
2006
).
29.
V. V.
Prokhorov
,
S. I.
Pozin
,
D. A.
Lypenko
,
O. M.
Perelygina
,
E. I.
Mal’tsev
, and
A. V.
Vannikov
, “
Molecular arrangements in polymorphous monolayer structures of carbocyanine dye J-aggregates
,”
Chem. Phys. Lett.
535
,
94
99
(
2012
).
30.
S.
Hayashi
,
Y.
Ishigaki
, and
M.
Fujii
, “
Plasmonic effects on strong exciton–photon coupling in metal-insulator-metal microcavities
,”
Phys. Rev. B
86
,
045408
(
2012
).
31.
W. M.
Takele
,
F.
Wackenhut
,
L.
Piatkowski
,
A. J.
Meixner
, and
J.
Waluk
, “
Multimode vibrational strong coupling of methyl salicylate to a Fabry–Pérot microcavity
,”
J. Phys. Chem. B
124
,
5709
5716
(
2020
).
32.
K.
Takatori
,
T.
Okamoto
,
K.
Ishibashi
, and
R.
Micheletto
, “
Surface exciton polaritons supported by a J-aggregate-dye/air interface at room temperature
,”
Opt. Lett.
42
,
3876
3879
(
2017
).

Supplementary Material

You do not currently have access to this content.