Microkinetic modeling has drawn increasing attention for quantitatively analyzing catalytic networks in recent decades, in which the speed and stability of the solver play a crucial role. However, for the multi-step complex systems with a wide variation of rate constants, the often encountered stiff problem leads to the low success rate and high computational cost in the numerical solution. Here, we report a new efficient sensitivity-supervised interlock algorithm (SSIA), which enables us to solve the steady state of heterogeneous catalytic systems in the microkinetic modeling with a 100% success rate. In SSIA, we introduce the coverage sensitivity of surface intermediates to monitor the low-precision time-integration of ordinary differential equations, through which a quasi-steady-state is located. Further optimized by the high-precision damped Newton’s method, this quasi-steady-state can converge with a low computational cost. Besides, to simulate the large differences (usually by orders of magnitude) among the practical coverages of different intermediates, we propose the initial coverages in SSIA to be generated in exponential space, which allows a larger and more realistic search scope. On examining three representative catalytic models, we demonstrate that SSIA is superior in both speed and robustness compared with its traditional counterparts. This efficient algorithm can be promisingly applied in existing microkinetic solvers to achieve large-scale modeling of stiff catalytic networks.

1.
J. K.
Norskov
,
F.
Abild-Pedersen
,
F.
Studt
, and
T.
Bligaard
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
937
(
2011
).
2.
J.
Greeley
,
J. K.
Nørskov
, and
M.
Mavrikakis
,
Annu. Rev. Phys. Chem.
53
,
319
(
2002
).
3.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
,
Surf. Sci.
411
,
186
(
1998
).
4.
B.
Hammer
and
J. K.
Norskov
,
Nature
376
,
238
(
1995
).
6.
J. A.
Dumesic
,
D. F.
Rudd
,
L. M.
Aparicio
,
J. E.
Rekoske
, and
A. A.
Trevino
,
The Microkinetics of Heterogeneous Catalysis
(
American Chemical Society
,
Washington, DC
,
1993
).
7.
8.
I.
Chorkendorff
and
J. W.
Niemantsve
,
Concepts of Modern Catalysis and Kinetics
(
Wiley-VCH
,
Weinheim
,
2003
).
9.
J. K.
Nørskov
,
F.
Studt
,
F.
Abild-Pedersen
, and
T.
Bligaard
,
Fundamental Concepts in Heterogeneous Catalysis
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2014
).
10.
A. H.
Motagamwala
,
M. R.
Ball
, and
J. A.
Dumesic
,
Annu. Rev. Chem. Biomol. Eng.
9
,
413
(
2018
).
11.
12.
C. T.
Campbell
,
Top. Catal.
1
,
353
(
1994
).
13.
C.
Stegelmann
,
A.
Andreasen
, and
C. T.
Campbell
,
J. Am. Chem. Soc.
131
,
8077
(
2009
).
14.
J. K.
Norskov
,
T.
Bligaard
, and
J.
Kleis
,
Science
324
,
1655
(
2009
).
15.
Reaction Design, CHEMKIN 10131,
2013
.
16.
D. G.
Goodwin
,
R. L.
Speth
,
H. K.
Moffat
, and
B. W.
Weber
(
2018
). “
Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes
,” https://www.cantera.org.
17.
A. J.
Medford
,
C.
Shi
,
M. J.
Hoffmann
,
A. C.
Lausche
,
S. R.
Fitzgibbon
,
T.
Bligaard
, and
J. K.
Nørskov
,
Catal. Lett.
145
,
794
(
2015
).
18.
I. A. W.
Filot
,
R. A.
van Santen
, and
E. J. M.
Hensen
,
Angew. Chem., Int. Ed.
53
,
12746
(
2014
).
19.
E. D.
Hermes
,
A. N.
Janes
, and
J. R.
Schmidt
,
J. Chem. Phys.
151
,
014112
(
2019
).
20.
R. J.
Madon
,
D.
Braden
,
S.
Kandoi
,
P.
Nagel
,
M.
Mavrikakis
, and
J. A.
Dumesic
,
J. Catal.
281
,
1
(
2011
).
21.
P.
Rubert-Nason
,
M.
Mavrikakis
,
C. T.
Maravelias
,
L. C.
Grabow
, and
L. T.
Biegler
,
AIChE J.
60
,
1336
(
2014
).
22.
M.
Faheem
,
M.
Saleheen
,
J.
Lu
, and
A.
Heyden
,
Catal. Sci. Technol.
6
,
8242
(
2016
).
23.
J. C.
Butcher
,
Numerical Methods for Ordinary Differential Equations
(
John Wiley & Sons Ltd.
,
Chichester, England
,
2008
).
24.
J. F.
Grcar
,
R. J.
Kee
,
M. D.
Smooke
, and
J. A.
Miller
,
Symp. (Int.) Combust.
21
,
1773
(
1988
).
25.
G. S.
Gusmão
and
P.
Christopher
,
AIChE J.
61
,
188
(
2015
).
26.
J.-F.
Chen
,
Y.
Mao
,
H.-F.
Wang
, and
P.
Hu
,
ACS Catal.
6
,
7078
(
2016
).
27.
M. E.
Hosea
and
L. F.
Shampine
,
Comput. Math. Appl.
28
,
45
(
1994
).
28.
L. F.
Shampine
and
M. W.
Reichelt
,
SIAM J. Sci. Comput.
18
,
1
(
1997
).
29.
M.
Yang
,
H.
Yuan
,
H.
Wang
, and
P.
Hu
,
Sci. China: Chem.
61
,
457
(
2018
).
30.
Z.
Chen
,
Y.
Mao
,
J.
Chen
,
H.
Wang
,
Y.
Li
, and
P.
Hu
,
ACS Catal.
7
(
7
),
4281
(
2017
).
31.
H.
Yuan
,
N.
Sun
,
J.
Chen
,
J.
Jin
,
H.
Wang
, and
P.
Hu
,
ACS Catal.
8
,
9269
(
2018
).
32.
H.
Yuan
,
J.
Chen
,
H.
Wang
, and
P.
Hu
,
ACS Catal.
8
,
10864
(
2018
).
33.
J.-F.
Chen
,
Y.
Mao
,
H.-F.
Wang
, and
P.
Hu
,
ACS Catal.
9
,
2633
(
2019
).

Supplementary Material

You do not currently have access to this content.